首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631042篇
  免费   6893篇
  国内免费   2564篇
化学   333279篇
晶体学   9842篇
力学   28484篇
综合类   77篇
数学   75513篇
物理学   193304篇
  2021年   5084篇
  2020年   5746篇
  2019年   6335篇
  2018年   8250篇
  2017年   8422篇
  2016年   12147篇
  2015年   7442篇
  2014年   11756篇
  2013年   28627篇
  2012年   22319篇
  2011年   26838篇
  2010年   19472篇
  2009年   19234篇
  2008年   24443篇
  2007年   24290篇
  2006年   22653篇
  2005年   20213篇
  2004年   18438篇
  2003年   16450篇
  2002年   16171篇
  2001年   18581篇
  2000年   14134篇
  1999年   10857篇
  1998年   9030篇
  1997年   8819篇
  1996年   8526篇
  1995年   7558篇
  1994年   7494篇
  1993年   7152篇
  1992年   8183篇
  1991年   8287篇
  1990年   7899篇
  1989年   7852篇
  1988年   7567篇
  1987年   7582篇
  1986年   7273篇
  1985年   9461篇
  1984年   9616篇
  1983年   7903篇
  1982年   8207篇
  1981年   7866篇
  1980年   7463篇
  1979年   8095篇
  1978年   8300篇
  1977年   8387篇
  1976年   8234篇
  1975年   7650篇
  1974年   7616篇
  1973年   7749篇
  1972年   5620篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
We consider the problem of determining the stress distributionin a finite rectangular elastic layer containing a Griffithcrack which is opened by internal shear stress acting alongthe length of the crack. The mode III crack is assumed to belocated in the middle plane of the rectangular layer. The followingtwo problems are considered: (A) the central crack is perpendicularto the two fixed lateral surfaces and parallel to the othertwo stress-free surfaces; (B) all the lateral surfaces of therectangular layer are clamped and the central crack is parallelto the two lateral surfaces. By using Fourier transformations,we reduce the solution of each problem to the solution of dualintegral equations with sine kernels and a weight function whichare solved exactly. Finally, we derive closed-form expressionsfor the stress intensity factor at the tip of the crack andthe numerical values for the stress intensity factor at theedges of the cracks are presented in the form of tables.  相似文献   
62.
Electrohydrodynamic instability in homeotropically oriented nematic samples of 4'-n-octyl-4-cyano-biphenyl and 4'n-alkyloxy-4-cyanobiphenyl, (n = 8.9) have been studied in an a.c. electric field. The domain patterns during the instability in these compounds in a very low frequency a.c. field are very similar to those in a d.c. field. The domain patterns observed at higher frequencies have been identified as 'maltese crosses' or 'crossed isogyres'. The electro-convective 'isotropic' flows near the electrode play an important role in the observed instability.  相似文献   
63.
64.
Influence exerted by additives introduced into the working solution, by iron or copper formedin electric-spark dispersion of these metals and zinc, on the quality of the products obtained in electric erosionwas studied.  相似文献   
65.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   
66.
The synthesis and characterization of a new homologous series of compounds, the 2-cyano-1,3-phenylene bis[4-(4-n-alkoxyphenyliminomethyl)benzoates] derived from 2-cyanoresorcinol is reported. All the compounds are enantiotropic mesogens and exhibit the fascinating B7 mesophase. The characterization of the mesophase was performed using polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical studies.  相似文献   
67.
68.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
69.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
70.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号