首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259808篇
  免费   3808篇
  国内免费   1334篇
化学   146153篇
晶体学   3421篇
力学   9528篇
综合类   62篇
数学   32079篇
物理学   73707篇
  2020年   2339篇
  2019年   2423篇
  2018年   3315篇
  2017年   3296篇
  2016年   5118篇
  2015年   3610篇
  2014年   4694篇
  2013年   11433篇
  2012年   10104篇
  2011年   11672篇
  2010年   8120篇
  2009年   7664篇
  2008年   10822篇
  2007年   10728篇
  2006年   10049篇
  2005年   9385篇
  2004年   8284篇
  2003年   7241篇
  2002年   7024篇
  2001年   7414篇
  2000年   5806篇
  1999年   4196篇
  1998年   3462篇
  1997年   3350篇
  1996年   3472篇
  1995年   2963篇
  1994年   3112篇
  1993年   2950篇
  1992年   3241篇
  1991年   3217篇
  1990年   3071篇
  1989年   2910篇
  1988年   2845篇
  1987年   2763篇
  1986年   2780篇
  1985年   3656篇
  1984年   3688篇
  1983年   3062篇
  1982年   3290篇
  1981年   3089篇
  1980年   2823篇
  1979年   3014篇
  1978年   3209篇
  1977年   3244篇
  1976年   3288篇
  1975年   2985篇
  1974年   3116篇
  1973年   3176篇
  1972年   2436篇
  1971年   1940篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
We study parametric oscillations of linear systems with one degree of freedom for large values of the modulation coefficient. We use the classical analytic Lyapunov-Poincaré perturbation methods and an original numerically-analytic method of accelerated convergence to construct periodic solutions and the corresponding eigenvalues. We find the boundaries of stability and instability domains. We use specific models to illustrate the main properties of parametric oscillations of systems with singular character of the perturbation dependence on the modulation coefficient. We consider periodic boundary value problems for the modified Mathieu equation and the Kochin equation modeling crankshaft torsional vibrations and show that there are significant differences between weakly and essentially perturbed periodicmotions both for the lowest and arbitrary oscillation modes. We also describe the unusual properties of the boundaries in the domain of the system determining parameters.  相似文献   
22.
The paper addresses the problem of calculation of the local stress field and effective elastic properties of a unidirectional fiber reinforced composite with anisotropic constituents. For this aim, the representative unit cell approach has been utilized. The micro geometry of the composite is modeled by a periodic structure with a unit cell containing multiple circular fibers. The number of fibers is sufficient to account for the micro structure statistics of composite. A new method based on the multipole expansion technique is developed to obtain the exact series solution for the micro stress field. The method combines the principle of superposition, technique of complex potentials and some new results in the theory of special functions. A proper choice of potentials and new results for their series expansions allow one to reduce the boundary-value problem for the multiple-connected domain to an ordinary, well-posed set of linear algebraic equations. This reduction provides high numerical efficiency of the developed method. Exact expressions for the components of the effective stiffness tensor have been obtained by analytical averaging of the strain and stress fields.  相似文献   
23.
The chlorination of benzene, toluene, and o-xylene with molecular chlorine in the presence of the phthalocyanine complexes of different structures was studied. The transformations of the catalysts during the reaction were investigated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1644–1647, August, 2008.  相似文献   
24.
Thermodynamic parameters of reactions of methyl and phenyl isocyanates with a series of compounds were determined by quantum-chemical calculations. The products of these reactions model for various functional groups present in commercial polyurethanes. The thermodynamic stability series for compounds formed from aliphatic and aromatic isocyanates were constructed.  相似文献   
25.
26.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
27.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
28.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   
29.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   
30.
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号