首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3027篇
  免费   131篇
  国内免费   23篇
化学   2373篇
晶体学   24篇
力学   78篇
数学   219篇
物理学   487篇
  2023年   16篇
  2022年   47篇
  2021年   58篇
  2020年   68篇
  2019年   78篇
  2018年   37篇
  2017年   43篇
  2016年   118篇
  2015年   92篇
  2014年   147篇
  2013年   203篇
  2012年   260篇
  2011年   294篇
  2010年   174篇
  2009年   141篇
  2008年   229篇
  2007年   212篇
  2006年   174篇
  2005年   159篇
  2004年   136篇
  2003年   108篇
  2002年   133篇
  2001年   30篇
  2000年   38篇
  1999年   24篇
  1998年   15篇
  1997年   23篇
  1996年   16篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有3181条查询结果,搜索用时 5 毫秒
91.
Titanium dioxide (TiO2) nanotubes are fabricated into anodic aluminum oxide (AAO) membrane via atomic layer deposition (ALD). For the ALD of TiO2, gaseous precursors, titanium (IV) isopropoxide and water are sequentially applied and chemically reacted with each other. A thickness of nanotubes is precisely controlled by the applied cycle numbers of ALD and the morphology of nanostructures is investigated by SEM and TEM. The amorphous property of TiO2 nanostructures is revealed by XRD and the composition of nanotubes is measured by TEM–EDX. The impurity contents and binding structure of the nanostructures are analyzed by XPS. The electrostatic capacitance of TiO2 nanotubes into AAO is 480 μF/cm2 and it is about 3 times higher compared with AAO membrane (172 μF/cm2).  相似文献   
92.
Geometric and conformational changes of zwitter‐type ionic liquids (ZILs) due to hydrogen‐bonding interactions with water molecules are investigated by density functional theory (DFT), two‐dimensional IR correlation spectroscopy (2D IR COS), and pulsed‐gradient spin‐echo NMR (PGSE NMR). Simulation results indicate that molecular structures in the optimized states are strongly influenced by hydrogen bonding of water molecules with the sulfonate group or imidazolium and pyrrolidinium rings of 3‐(1‐methyl‐3‐imidazolio)propanesulfonate ( 1 ) and 3‐(1‐methyl‐1‐pyrrolidinio)propanesulfonate ( 2 ), respectively. Concentration‐dependent 2D IR COS reveals kinetic conformational changes of the two ZIL–H2O systems attributable to intermolecular interactions, as well as the interactions of sulfonate groups and imidazolium or pyrrolidinium rings with water molecules. The dramatic changes in the 1H self‐diffusion coefficients elucidate the formation of proton‐conduction pathways consisting of ZIL networks. In ZIL domains, protons are transferred by a Grotthuss‐type mechanism through formation, breaking, and restructuring of bonds between ZILs and H2O, leading to an energetically favorable state. The simulation and experimental investigations delineated herein provide a perspective to understanding the interactions with water from an academic point of view as well as to designing ILs with desired properties from the viewpoint of applications.  相似文献   
93.
The development of selective electrocatalysts for the chlorine evolution reaction (CER) is majorly restrained by a scaling relation between the OCl and OOH adsorbates, rendering that active CER catalysts are also reasonably active in the competing oxygen evolution reaction (OER). While theory predicts that the OCl versus OOH scaling relation can be circumvented as soon as the elementary reaction steps in the CER comprise the Cl rather than the OCl adsorbate, it was demonstrated recently that PtN4 sites embedded in a carbon nanotube follow this theoretical prediction. Advanced experimental analyses illustrate that the PtN4 sites also reveal a different reaction kinetics compared to the industrial benchmark of dimensionally stable anodes (DSA). A reverse Volmer–Heyrovsky mechanism was identified, in which the rate-determining Volmer step for small overpotentials is followed by the kinetically limiting Heyrovsky step for larger overpotentials. Since the PtN4 sites excel DSA in terms of activity and chlorine selectivity, we suggest the Cl intermediate as well as the reverse Volmer–Heyrovsky mechanism as the design criteria for the development of next-generation electrode materials beyond DSA.  相似文献   
94.
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review.  相似文献   
95.
96.
Mutual calibration was suggested as a method to determine the absolute thickness of ultrathin oxide films. It was motivated from the large offset values in the reported thicknesses in the Consultative Committee for Amount of Substance (CCQM) pilot study P-38 for the thickness measurement of SiO2 films on Si(100) and Si(111) substrates in 2004. Large offset values from 0.5 to 1.0 nm were reported in the thicknesses by ellipsometry, X-ray reflectometry (XRR), medium-energy ion scattering spectrometry (MEIS), Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), and transmission electron microscopy (TEM). However, the offset value for the thicknesses by X-ray photoelectron spectroscopy (XPS) was close to zero (−0.013 nm). From these results, the mutual calibration method was reported for the thickness measurement of SiO2 films on Si(100) by combination of TEM and XPS. The mutual calibration method has been applied for the thickness measurements of hetero oxide films such as Al2O3 and HfO2. Recently, the effect of surface contamination was reported to be critical to the thickness measurement of HfO2 films by XPS. On the other hand, MEIS was proved to be a powerful zero offset method which is not affected by the surface contamination. As a result, the reference thicknesses in the CCQM pilot study P-190 for the thickness measurement of HfO2 films on Si(100) substrate were determined by mutual calibration method from the average XRR data and MEIS analysis. Conclusively, the thicknesses of ultrathin oxide films can be traceably certified by mutual calibration method and most thickness measurement methods can be calibrated from the certified thicknesses.  相似文献   
97.
This study was undertaken to investigate the sorption behavior of chromium hydroxide sol on silica type adsorbent in aqueous solution. Radioisotopic tracer method was used to assess data. This technique allowed sensitive kinetic and equilibrium measurements in both direction: sorption and desorption, which are strongly dependent on solution conditions, such as pH, ionic strength or the presence of complexing species. Total removal of sol particles could not be achieved, even under the most favorable experimental conditions (acidification).  相似文献   
98.
99.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.  相似文献   
100.
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号