首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   17篇
  国内免费   5篇
化学   183篇
力学   6篇
数学   60篇
物理学   71篇
  2022年   5篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   19篇
  2011年   35篇
  2010年   19篇
  2009年   6篇
  2008年   22篇
  2007年   20篇
  2006年   19篇
  2005年   11篇
  2004年   15篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
71.
Transition metal-catalyzed [m+n+o] carbocyclization reactions provide powerful methods for the construction of complex polycyclic systems that are generally not accessible through classical pericyclic reactions. We have developed the first regio- and enantioselective crossed intermolecular rhodium-catalyzed [2+2+2] carbocyclization of carbon- and heteroatom-tethered 1,6-enynes with unsymmetrical 1,2-disubstituted alkynes. This study clearly delineates the ligand requirements for obtaining excellent regio- and enantioselectivity. Furthermore, the ability to utilize various electron-withdrawing groups, and to introduce quaternary carbon stereogenic centers, provides the level of versatility necessary for its application to target-directed synthesis. Additional studies on the development and application of this novel methodology to the total synthesis of natural products are currently underway.  相似文献   
72.
Label-free cell separation and sorting in microfluidic systems   总被引:2,自引:0,他引:2  
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible.  相似文献   
73.
An interesting rhodium-catalyzed asymmetric aqueous Pauson-Khand-type reaction was developed. A chiral atropisomeric dipyridyldiphosphane ligand was found to be highly effective in this system. This operationally simple protocol allows both catalyst and reactants to be handled under air without precautions. Various enynes were transformed to the corresponding bicyclic cyclopentenones in good yield and enantiomeric excess (up to 95 % ee). A study of the electronic effects of the enyne substrates revealed a correlation between the electronic properties of the substrates and the ee value obtained in the product of the Pauson-Khand-type reaction. A linear free-energy relationship was observed from a Hammett study.  相似文献   
74.
75.
We report a direct precipitation method for mass production of ZnO microflowers (MFs) containing hierarchical structures. The ZnO MFs are constructed by interlaced single crystalline and porous nanosheets which are ideal photoanode material for dye-sensitized solar cells (DSCs) because the MFs can largely improve the energy harvesting performance and the efficiency of DSCs. Compared with other forms of nano-sized structures, the novel hierarchical structures show obvious advantages in DSC application because of their large surface area for dye-loading, good light scattering efficiency and excellent electrical transport property. The quasi-solid state DSCs fabricated with the MF hierarchical structures exhibited an efficiency of 4.12%, much higher than that of ZnO nanoparticle-based DSCs, indicating a great potential for the development of highly-efficient quasi-solid DSCs.  相似文献   
76.
The biomorphic CuO/CeO2/Al2O3 was used as a catalyst in methanol steam reforming (SRMe), and the reaction mechanism was studied. It was found that the oxidation states of Cu in the biomorphic sample would vary with the reaction temperature and they also affected the rate of the reaction. Below 200 °C, SRMe would not occur, and the X-ray diffractometry study indicated that the CuO/CeO2/Al2O3 sample remained unchanged. Above 200 °C, the SRMe occurred when CuO started to be reduced to Cu. As the reaction temperature increased, Cu reacted with CO2 and led to the formation of Cu2O during the reversed water gas shift reaction. Above 250 °C, the conversion of MeOH to CO2 and H2 reached to a saturation of 95% even if the amount of metallic Cu was reduced to half of its original portion. This confirmed that both Cu and Cu2O were active components for promoting SRMe.  相似文献   
77.
The study of manganese complexes as water‐oxidation catalysts (WOCs) is of great interest because they can serve as models for the oxygen‐evolving complex of photosystem II. In most of the reported Mn‐based WOCs, manganese exists in the oxidation states III or IV, and the catalysts generally give low turnovers, especially with one‐electron oxidants such as CeIV. Now, a different class of Mn‐based catalysts, namely manganese(V)–nitrido complexes, were explored. The complex [MnV(N)(CN)4]2− turned out to be an active homogeneous WOC using (NH4)2[Ce(NO3)6] as the terminal oxidant, with a turnover number of higher than 180 and a maximum turnover frequency of 6 min−1. The study suggests that active WOCs may be constructed based on the MnV(N) platform.  相似文献   
78.
Ochratoxin A (OTA) is a toxic and potentially carcinogenic fungal toxin found in a variety of food commodities. A new sensitive method has been developed to quantify OTA in cereal products by reversed-phase liquid chromatography (LC) with mass spectrometric (MS) detection. Ochratoxin B was used as the internal standard. OTA was extracted from cereal products with acetonitrile-water, and the extract was diluted with a buffer; the diluted extract was cleaned up on an immunoaffinity column before LC/MS analysis. Two multiple-reaction monitoring transitions were used, one for quantification of OTA and one for confirmation of identity. The method was shown to be highly sensitive, with a low decision limit (CCalpha) of 0.012 microg/kg and a detection capability (CCbeta) of 0.021 microg/kg. Within-laboratory repeatability coefficient of variation values were 7.1, 3.7, and 3.1%, and the corresponding recoveries were 104, 106, and 103% for rice samples fortified with OTA at 0.05, 0.10, and 0.15 microg/kg, respectively. Method validation was performed according to the criteria of European Commission Decision 2002/657/EC. All criteria as presented in the Commission Decision were fulfilled. This method is the first fully validated method using immunoaffinity chromatography for cleanup and MS for detection in the analysis of cereals for OTA. The method was also successfully applied to cereal-derived products. The analytical results for determination of the OTA content of cereal products commercially available in Hong Kong are also reported.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号