首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
化学   72篇
力学   9篇
数学   11篇
物理学   27篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2014年   3篇
  2013年   8篇
  2012年   16篇
  2011年   11篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有119条查询结果,搜索用时 312 毫秒
91.
This study was conducted to examine the effects of dietary grape extracts on preneoplastic foci formation in rat hepatocarcinogenesis, and related hepatic enzymes. Male Sprague-Dawley rats were fed basal diet or grape diet containing 15% concentrated grape extracts (68 bricks). The grape diet groups were divided into whole-period grape diet group (DEN-GW; grape diet group fed throughout experimental period) and postinitiation grape diet group (DEN-GP; grape diet group fed from post initiation stage) according to the starting time point of the grape diet. Hepatocarcinogenesis was induced by diethylnitrosamine (DEN; 200 mg/kg bw) and 2/3 partial hepatectomy (DEN-B; DEN-treated basal diet group, DEN-GW, and DEN-GP groups), while the control group treated with saline and sham operation (Control group). The formation of placental glutathione (GSH) S-transferase positive (GST-P+) foci in DEN-GW group was moderately but significantly suppressed, however, not in DEN- GP group. Thiobarbituric acid reactive substances content of DEN-GW group was significantly lower than that of DEN-B group. The activity of fatty acid synthase (FAS) in the grape diet groups was decreased about 1/2 of the DEN-B group. The content of GSH and GSH peroxidase activity were increased by carcinogen treatment, but not modulated by grape diet. The activities of GSH S-transferase, p-nitrophenol hydroxylase, and catalase were not affected by diet or treatment. Conclusively, the grape diet-induced reduction of FAS activity that was expressed highly in neoplastic tissues, might be one of the contributing mechanisms of hepatic cancer prevention.  相似文献   
92.
1-Alkyl-4,5-dichloropyridazin-6-oncs and (4,5-dichloro-6-oxopyridazin-1-yl)methylcarboxylates were synthesized from 4,5-dichloro-1-hydroxymethylpyridazin-6-one and the corresponding alkyl halides or carboxylic acid chlorides. Also the reaction mechanisms via a fragmentation of retro-ene type are discussed.  相似文献   
93.
Amide groups are pervasive across the chemical space continuum, where their structural and pharmacological importance, juxtaposed with the hydrolytic vulnerabilities, continues to fuel bioisostere development. Alkenyl fluorides have a venerable history as effective mimics (Ψ[CF=CH]) owing to the planarity of the motif and intrinsic polarity of the C(sp2)−F bond. However, emulating the s-cis to the s-trans isomerisation of a peptide bond with fluoro-alkene surrogates remains challenging, and current synthetic solutions only enable access to a single configuration. Through the design of an ambiphilic linchpin based on a fluorinated β-borylacrylate, it has been possible to leverage energy transfer catalysis to affect this unprecedented isomerisation process: this provides geometrically-programmable building blocks that can be functionalised at either terminus. Irradiation at λmax=402 nm with inexpensive thioxanthone as a photocatalyst enables rapid, effective isomerisation of tri- and tetra-substituted species (up to E/Z 98 : 2 in 1 h), providing a stereodivergent platform for small molecule amide and polyene isostere discovery. Application of the methodology in target synthesis and initial laser spectroscopic studies are disclosed together with crystallographic analyses of representative products.  相似文献   
94.
Effects of the concentration of poloxamer 407, temperature, and the concentration of sericin on the gelation of silk sericin (SS) were studied. Gelation of SS was accelerated with an increase in poloxamer concentration and temperature. The sol‐gel transition of SS became irreversible with respect to the temperature in the presence of poloxamer, whereas the sol‐gel transition of SS itself was reversible. Infrared (IR) and circular dichroism (CD) spectra show that the conformational change of SS in the presence of poloxamer was accelerated from random coil to β‐structure. X‐ray diffraction and differential scanning calorimetry (DSC) show that the crystalline structure of poloxamer in the mixture was affected by the presence of SS and that its melting temperature was shifted to lower temperature with increasing SS content, indicating an interaction between poloxamer and SS through hydrogen and hydrophobic bondings.  相似文献   
95.
Zero path-length difference interferometry is demonstrated using the filter response of an unbalanced interferometer to the spontaneous/spontaneous beat noise spectrum of an amplified spontaneous emission source. The method is applicable to path-length differences ranging from a few centimeters to several kilometers.  相似文献   
96.
Cancer cachexia syndrome is a major cause of morbidity and mortality in cancer patients in the advanced stage. It is a devastating disorder characterized by nutritional impairment, weakness, and wasting, and it affects treatment success and quality of life. Two major symptoms of cancer cachexia are anorexia and weight loss. Weight loss in cachexia is not reversed through increased food intake, suggesting that anorexia and weight loss in cancer patients are regulated by independent molecular mechanisms. Although the wasting phenotype mostly occurs in skeletal muscle and adipose tissue, other organs, such as the brain, liver, pancreas, heart, and gut, are also involved in cachexia. Thus, cachexia is a multiorgan syndrome. Although the molecular basis of cancer cachexia-induced weight loss is known, the mechanism underlying anorexia is poorly understood. Here, we highlight our recent discovery of a new anorexia mechanism by which a tumor-derived humoral factor induces cancer anorexia by regulating feeding-related neuropeptide hormones in the brain. Furthermore, we elucidated the process through which anorexia precedes tissue wasting in cachexia. This review article aims to provide an overview of the key molecular mechanisms of anorexia and tissue wasting caused by cancer cachexia.Subject terms: Cancer metabolism, Cancer metabolism  相似文献   
97.
This paper presents the synthesis of 1‐[(pyrazol‐3‐yl)methyl]pyridazin‐6‐ones from ethyl 4‐(4,5‐dichloro‐6‐oxopyridazin‐1‐yl)‐3‐oxobutanoate.  相似文献   
98.
99.
The reactivity of six kerosene based control fuels, specifically formulated for cetane number variation, are investigated by measuring ignition delay time in a heated rapid compression machine. Cetane numbers vary from 30 to 55 (increment of 5) while holding other properties relatively constant by adjusting chemical group composition. Main cetane variation was controlled through the distribution of normal alkanes and isoalkanes, which was fine-tuned using additives. Other fuel properties such as density, viscosity, H/C ratio, etc. were balanced using cyclic compounds and aromatics. Fuels were tested in the RCM at compressed pressures of Pc=?10 and 20?bar, equivalence ratios of ??=?0.25, 0.5 and 1.0, in the low to intermediate temperature range (620?K?≤?Tc?≤?730?K). Relations between cetane number and ignition delay time have been evaluated at multiple test conditions, and further analysis on multistage ignition has been conducted. Ignition delay times of fuels with higher cetane numbers are shorter at these temperatures for most conditions. First stage ignition delay time measurements have been observed to be relatively insensitive to Pc, ?, and fuel type, while deviations in overall ignition delay times are mainly attributed to second stage ignition delay time, impacted by variations in the first stage temperature. Control fuels of this type offer an opportunity to be used in practical experiments to determine the impact of cetane number on combustion dynamics.  相似文献   
100.
Fuel-flexible aircraft propulsion systems using compression ignition engines will require novel strategies for reducing the ignition delay of low-reactivity fuels to feasible timescales. Hot surface ignition of fuel sprays has been implemented in some practical situations, but the complex nature of flame formation within the spray structure poses significant challenges. In order to design next-generation ignition devices, the capacity of hot surface heating elements to promote fuel spray ignition must be investigated. In this study, a rapid compression machine (RCM) was used to examine the ignition process of a single kerosene-based F-24 jet fuel spray with a cylindrical heating element inserted into the spray periphery. The experiments, performed with moderately high injection pressures of 40 MPa, have demonstrated two modes of ignition governed by surface temperature and insertion depth of the heating element. There exists an optimal position where the heating element tip is located in the fuel vapor cone around the liquid spray. For this configuration, a critical surface temperature was identified (~1250 K), above which short ignition delays associated with a “spray ignition” mode are consistently achieved. In this case, a local ignition flame kernel propagates downstream to the flame lift-off length before full ignition of the spray. In comparison, below the critical temperature a slower “volumetric” mode results. The extended ignition delays associated with this mode may be impractical for compression ignition engines operating at high speeds and increased altitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号