We report a new approach for the synthesis of new chiral synthons in which two unsaturated sugars are linked via a glycosidic bond. The di-unsaturated disaccharide can be further functionalized using effective, highly selective methods and used in convergent syntheses of relatively complex glycoconjugates. Our approach utilizes in situ generation of active glycosyl donors via Ferrier-type rearrangement under phase-transfer conditions and subsequent reaction with a nucleophile. 相似文献
In this study, the staining properties of selected amino acids with Brassica oleraceae extract in alum and alum-free media were investigated. Basic, acidic and neutral amino acids (arginine, glutamic acid and glycine) were used to investigate the effect of staining. It was determined that all amino acids were stained in alum media. In the second step, the R group of amino acids found in the proteins of the cell nucleus was reacted with salicyl aldehyde. This reaction was successful only with Arginine. The staining properties of the newly formed compound were also investigated in alum and alum-free environments. Evaluation of the results was done using FT-IR and 1H NMR methods. All compounds were optimized with the Gaussian G09 program (DFT/B3LYP/6.311 ?G(d.p) basic set. HOMO, LUMO and HOMO-LUMO gap values were determined. Chemical reaction capabilities of amino acids were discussed with the help of HOMO-LUMO gap values. 相似文献
Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.
We investigate the parameter dynamics of eigenvalues of Hamiltonians (‘level dynamics’) defined on symmetric spaces relevant to condensed matter and particle physics. In particular we: (1) identify the appropriate reduced manifold on which the motion takes place, (2) identify the correct Poisson structure ensuring the Hamiltonian character of the reduced dynamics, (3) determine the canonical measure on the reduced space, (4) calculate the resulting eigenvalue density. 相似文献
Optical detection of the frequency-dependent magnetic relaxation signal is used to monitor the binding of biological molecules to magnetic nanoparticles in a ferrofluid. Biological binding reactions cause changes in the magnetic relaxation signal due to an increase in the average hydrodynamic diameter of the nanoparticles. To allow the relaxation signal to be detected in dilute ferrofluids, measurements are made using a balanced photodetector, resulting in a 25 μV/√Hz noise floor, within 50% of the theoretical limit imposed by photon shot noise. Measurements of a ferrofluid composed of magnetite nanoparticles coated with anti-IgG antibodies show that the average hydrodynamic diameter increases from 115.2 to 125.4 nm after reaction with IgG. 相似文献
How quay cranes (QC) are scheduled is vital to the productivity of seaside container port operations. Double cycling concept is an operation strategy of loading the containers into ships as they are unloaded, thus improving the efficiency of a QC as well as the container port. Goodchild and Daganzo (Transp Sci 40(4):473–483, 2006) first described QC double cycling problem and solved the problem after formulating it into a two machine flow shop problem. Song (Port Technol Int 36:50–52, 2007) studied the formula to determine the optimal starting sequence for double cycling while reflecting on the practical issue of QC working direction. The above studies focused on a single QC double cycling and their empirical trials showed the double cycling could improve the productivity of each QC approximately by between 10 and 20 %. In Zhang and Kim (Comput Ind Eng 56(3):979–992, 2009), a multiple QC double cycling model was first suggested by formulating a mixed integer programming model to maximise the number of double cycles between multiple QCs. In the present paper we point out a flaw with the existing multiple QC double cycling model that lets cycles that are not implementable. In addition, the paper discusses the need for imposing constraints arising from real world requirements to the formulations aiming at double cycling. 相似文献
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields. 相似文献
Let T=(V,E) be a free tree in which each vertex has a weight and each edge has a length. Let n=|V|. Given T and parameters k and l, a (k,l)-tree core is a subtree X of T with diameter l, having k leaves, which minimizes the sum of the weighted distances from all vertices in T to X. In this paper, two efficient algorithms are presented for finding a (k,l)-tree core of T. The first algorithm has O(n2) time complexity for the case that each edge has an arbitrary length. The second algorithm has O(lkn) time complexity for the case that the lengths of all edges are 1. The (k,l)-tree core problem has an application in distributed database systems. 相似文献