首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   87篇
  国内免费   28篇
化学   1555篇
晶体学   28篇
力学   58篇
数学   469篇
物理学   389篇
  2023年   20篇
  2022年   72篇
  2021年   83篇
  2020年   50篇
  2019年   55篇
  2018年   47篇
  2017年   45篇
  2016年   93篇
  2015年   77篇
  2014年   102篇
  2013年   150篇
  2012年   140篇
  2011年   147篇
  2010年   100篇
  2009年   105篇
  2008年   139篇
  2007年   141篇
  2006年   118篇
  2005年   106篇
  2004年   97篇
  2003年   80篇
  2002年   55篇
  2001年   41篇
  2000年   38篇
  1999年   32篇
  1998年   37篇
  1997年   24篇
  1996年   28篇
  1995年   29篇
  1994年   26篇
  1993年   19篇
  1992年   25篇
  1991年   20篇
  1990年   17篇
  1989年   16篇
  1988年   15篇
  1987年   8篇
  1986年   11篇
  1985年   21篇
  1984年   16篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   8篇
  1976年   3篇
  1974年   4篇
  1966年   1篇
排序方式: 共有2499条查询结果,搜索用时 15 毫秒
41.
Acyclic nucleosides of 4‐nitro‐1H‐imidazole and 4‐nitropyrazole have been synthesized by nucleophilic addition of the appropriate 4‐nitroazole to (?)‐(S)‐(hydroxymethyl)oxirane in the presence of a catalytic amount of potassium carbonate. (+)‐(R)‐3‐(4‐nitro‐1H‐imidazol‐1‐yl)propane‐1,2‐diol and (+)‐(R)‐3‐(2‐methyl‐4‐nitro‐1H‐imidazol‐1‐yl)propane‐1,2‐diol were also obtained in an independent reaction starting from appropriate 1,4‐dinitro‐1H‐imidazole and (+)‐(R)‐3‐aminopropane‐1,2‐diol. (+)‐(R)‐3‐(4‐Nitropyrazol‐1‐yl)propane‐1,2‐diol was also obtained by direct noncatalyzed addition of 4‐nitropyrazole to (?)‐(S)‐(hydroxymethyl)oxirane, whereas the (S)‐enantiomer was obtained by reaction of 4‐nitropyrazole with (+)‐(S)‐1,2‐O‐isopropylideneglycerol under Mitsunobu reaction conditions, followed by a cleavage of the isopropylidene group with 80% AcOH. Racemization during any of these syntheses has not been observed. 3‐(4‐Nitroazol‐1‐yl)propane‐1,2‐diols were incorporated into a 26‐mer oligonucleotide. UV Thermal melting studies of duplexes of the oligonucleotides with 4‐nitropyrazole or 4‐nitro‐1H‐imidazole paired with four natural bases showed moderately decreased stabilities of the duplexes. A narrow range of melting temperatures, typically being within 2° for each acyclic nucleoside, fulfill one of the requirements of using acyclic 4‐nitroazoles as general bases. Single incorporation of 4‐nitroazoles into a 14‐mer triplex forming oligonucleotide resulted in considerably decreased triplex stabilities.  相似文献   
42.
Polymerization of THF in CCl4 solvent was initiated with 1,3-dioxolan-2-ylium eations with AsF6?, PF6?, and SbF6? anions as well as with esters of fluorosulfonic and trifluoromethanesulfonic acids. With these esters polymerization proceeds with a marked acceleration period, due to slow initiation. The corresponding rate constants of initiation and their dependence on the polarity of the THF/CCl4 mixture were determined. The rate constant of propagation on the macroion-pairs (kp±) of the polytetrahydrofurylium cation with AsF6?, PF6?, and SbF6? and CF3SO3?, anions was found to be independent in CCl4 solvent on the anion structure and given by the expression: kp± = 2.93 × 10?2 exp {?4.7 × 103/T} at [THF]0 = 8.0M. This constant depends on the polarity of the polymerization mixture, and at 25°C for the THF-CCl4 system, kp± = 1.78 × 10?2 exp {?4.9/D}; thus, in CCl4 at [THF]0 = 8.0M, and at 25° kp± = 4.0 × 10?21/mole-sec. In the polymerization with derivatives of CF3SO3H (able to form the corresponding macroester) the overall polymerization rate is much lower than that with complex anions because of the reversible conversion of the macroion-pairs into the macroester (internal return). The macroester is much less reactive than the macroionpair (102–103 times) in the monomer addition reaction. At [THF]0 = 8.0M and at 25°C, 96.5% of the growing species exists in the macroester form. Polymerization of THF initiated with derivatives of CF3SO3H is a subject of a strong special salt-effect. At a sufficiently high ratio of [AgSbF6] to [I]0, where the initiator I is C2H5OSO2CF3, the overall polymerization rate is equal to that observed for the polymerization of THF on the macroion-pairs, since the internal return within the triflate ion-pair (the macroester formation) is eliminated and polymerization proceeds on the macroion-pairs with SbF6- anions exclusively.  相似文献   
43.
The role of different H-bonds in phases II, III, IV, and V of triammonium hydrogen disulfate, (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2), has been studied by X-ray diffraction and (1)H solid-state MAS NMR. The proper space group for phase II is C2/c, for phases III and IV is P2/n, and for phase V is P onemacr;. The structures of phases III and IV seem to be the same. The hydrogen atom participating in the O(-)-H(+).O(-) H-bond in phase II of (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2) at room temperature is split at two positions around the center of the crucial O(-)-H(+).O(-) H-bonding, joining two SO(4)(2)(-) tetrahedra. With decreasing temperature, it becomes localized at one of the oxygen atoms. Further cooling causes additional differentiation of possibly equivalent sulfate dimers. The NH(4)(+) ions participate mainly in bifurcated H-bonds with two oxygen atoms from sulfate anions. On cooling, the major contribution of the bifurcated H-bond becomes stronger, whereas the minor one becomes weaker. This is coupled with rotation of sulfate ions. In all the phases of (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2), some additional, weak but significant, reflections are observed. They are located between the layers of the reciprocal lattice, suggesting possible modulation of the host (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2) structure(s). According to (1)H MAS NMR obtained for phases II and III, the nature of the acidic proton disorder is dynamic, and localization of the proton takes place in a broader range of temperatures, as can be expected from the X-ray diffraction data.  相似文献   
44.
The structural data for sodium 2‐hydroxy‐5‐nitro­benzyl­sulfonate monohydrate, Na+·C7H6NO6S?·H2O, which mimics an artificial substrate for human aryl­sulfatase A, viz. p‐­nitrocatechol sulfate, reveal that the geometric parameters of the substrate and its analogue are very similar. Two water mol­ecules, the phenolic O atom and three sulfonate O atoms form the coordination sphere of the Na+ ion, which is a distorted octahedron. The Na+ cations and the O atoms join to form a chain polymer.  相似文献   
45.
The interdiffusion process in thin and thick (500nm–60µm) Au–Ni layers deposited on different substrates is studied using the EDS technique. In-depth X-ray analysis based on the Pouchou and Pichoir method is applied for obtaining the concentration profiles in nanometre scale multi-layers. A theoretical analysis using the Darken method is employed for modelling interdiffusion in the Au–Ni system. Computer simulations, where intrinsic diffusivities of the Au and Ni are functions of composition, are presented and compared with experimental results.  相似文献   
46.
Abstract— Benoxaprofen [2-(4-chlorophenyl)-α-methyl-5-benzoxazole acetic acid] is an anti-inflammatory drug that causes acute phototoxicity in many patients. Photolysis studies in organic solvents (ethanol, benzene, dimethylsulfoxide) showed that benoxaprofen underwent both Type I and Type II reactions. Irradiation of an anerobic solution of benoxaprofen in ethanol resulted in hydrogen abstraction from the solvent to yield hydroxyethyl and ethoxyl radicals. In the presence of oxygen, superoxide, singlet oxygen and hydroxyethyl radicals were detected. Photolysis of benoxaprofen in air-saturated benzene or dimethylsulfoxide gave superoxide. However, under anerobic conditions the drug yielded a carbon-centered radical in benzene that could not be identified. These findings suggest that both oxygen-dependent and oxygen-independent processes may be important in the phototoxic reactions of benoxaprofen.  相似文献   
47.
The two isomeric compounds 4‐amino‐ONN‐azoxy­benzene [or 1‐(4‐amino­phenyl)‐2‐phenyl­diazene 2‐oxide], i.e. the α isomer, and 4‐amino‐NNO‐azoxy­benzene [or 2‐(4‐amino­phenyl)‐1‐phenyl­diazene 2‐oxide], i.e. the β isomer, both C12H11N3O, crystallized from a polar solvent in orthorhombic space groups, and their crystal and molecular structures have been determined using X‐ray diffraction. There are no significant differences in the bond lengths and valence angles in the two isomers, in comparison with their monoclinic polymorphs. However, the conformations of the mol­ecules are different due to rotation along the Ar—N bonds. In the α isomer, the benzene rings are twisted by 31.5 (2) and 14.4 (2)° towards the plane of the azoxy group; the torsion angles along the Ar—N bond in the β isomer are 24.3 (3) and 23.5 (3)°. Quantum‐mechanical calculations indicate that planar conformations are energetically favourable for both isomers. The N—H?O hydrogen bonds observed in both networks may be responsible for the deformation of these flexible mol­ecules.  相似文献   
48.
49.
Potentiometric and spectroscopic data have shown that octarepeat dimer and tetramer are much more effective ligands for Cu(II) ions than simple octapeptide. Thus, the whole N-terminal segment of prion protein due to cooperative effects, could be more effective in binding of Cu(II) than simple peptides containing a His residue. The gain of the Cu(II) binding by longer octarepeat peptides derives from the involvement of up to four imidazoles in the coordination of the first Cu(II) ion. This type of binding increases the order of the peptide structure, which allows successive metal ions for easier coordination.  相似文献   
50.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号