首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学   11篇
物理学   11篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
12.
We present structural and optical properties of silver clusters Agn (n=2, 4, 6, 8) at two model support sites of MgO, stoichiometric MgO(100) and FS-center defect, based on density functional theory and embedded cluster model. Our results provide the mechanism responsible for the absorption and emission patterns due to the specific interaction between the excitations within the cluster and the support site which is strongly cluster size and structure dependent. We propose Ag4 at stoichiometric site as well as Ag2, Ag4 and Ag6 at FS-center defects as good candidates for the emissive centers in the visible regime.  相似文献   
13.
We present a broadly applicable, physically motivated, first-principles approach to determining the fundamental gap of finite systems from single-electron orbital energies. The approach is based on using a range-separated hybrid functional within the generalized Kohn-Sham approach to density functional theory. Its key element is the choice of a range-separation parameter such that Koopmans' theorem for both neutral and anion is obeyed as closely as possible. We demonstrate the validity, accuracy, and advantages of this approach on first, second and third row atoms, the oligoacene family of molecules, and a set of hydrogen-passivated silicon nanocrystals. This extends the quantitative usage of density functional theory to an area long believed to be outside its reach.  相似文献   
14.
15.
We present a systematic density functional theory study of the electronic structure of copper phthalocyanine (CuPc) using several different (semi)local and hybrid functionals and compare the results to experimental photoemission data. We show that semilocal functionals fail qualitatively for CuPc primarily because of underbinding of localized orbitals due to self-interaction errors. We discuss an appropriate choice of functional for studies of CuPc/metal interfaces and suggest the Heyd-Scuseria-Ernzerhof screened hybrid functional as a suitable compromise functional.  相似文献   
16.
Young’s moduli of selected amino acid molecular crystals were studied both experimentally and computationally using nanoindentation and dispersion‐corrected density functional theory. The Young modulus is found to be strongly facet‐dependent, with some facets exhibiting exceptionally high values (as large as 44 GPa). The magnitude of Young’s modulus is strongly correlated with the relative orientation between the underlying hydrogen‐bonding network and the measured facet. Furthermore, we show computationally that the Young modulus can be as large as 70–90 GPa if facets perpendicular to the primary direction of the hydrogen‐bonding network can be stabilized. This value is remarkably high for a molecular solid and suggests the design of hydrogen‐bond networks as a route for rational design of ultra‐stiff molecular solids.  相似文献   
17.
Generalized Kohn–Sham (GKS) theory extends the realm of density functional theory (DFT) by providing a rigorous basis for non-multiplicative potentials, the use of which is outside original Kohn–Sham theory. GKS theory is of increasing importance as it underlies commonly used approximations, notably (conventional or range-separated) hybrid functionals and meta-generalized-gradient-approximation (meta-GGA) functionals. While this approach is often extended in practice to time-dependent DFT (TDDFT), the theoretical foundation for this extension has been lacking, because the Runge–Gross theorem and the van Leeuwen theorem that serve as the basis of TDDFT have not been generalized to non-multiplicative potentials. Here, we provide the necessary generalization. Specifically, we show that with one simple but non-trivial additional caveat – upholding the continuity equation in the GKS electron gas – the Runge–Gross and van Leeuwen theorems apply to time-dependent GKS theory. We also discuss how this is manifested in common GKS-based approximations.  相似文献   
18.
We examine the applicability of density functional theory (DFT) to the polarizability of Cn- (n = 3-9) cluster anions. This was achieved by comparing DFT calculations using two different exchange-correlation functionals (the non-empirical local density approximation, LDA, and the semiempirical hybrid functional B97-1) to quantum chemical calculations using the coupled cluster method in the CCSD(T) "gold standard" approximation. We find that, unless the extra electron is not bound at all by DFT, both LDA and B97-1 agree with the CCSD(T) calculation to within 5-10%, allowing for a meaningful qualitative and semiquantitative analysis. Furthermore, the polarizability is found to increase monotonically with chain size, consistent with the trend inferred from electron detachment experiments.  相似文献   
19.
20.
We examine the utility of photoelectron spectroscopy (PES) as a structural probe of Si(n) (-) in the n=20-26 size range by determining isomers and associated photoelectron spectra from first principles calculations. Across the entire size range, we consistently obtain a good agreement between the theory and experiment [Hoffmann et al., Eur. Phys. J. D 16, 9 (2001)]. We find that PES can almost invariably distinguish between structurally distinct isomers at a given cluster size, but that structurally similar isomers usually cannot be reliably distinguished by PES. For many, but not all, sizes the isomer giving the best match to experiment is the lowest-energy one found theoretically. Thus, combining theory with PES experiments emerges as a useful source of structural information even for intermediate size clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号