首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
化学   68篇
力学   2篇
数学   6篇
物理学   20篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   7篇
  2011年   14篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
61.
From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.  相似文献   
62.
The chemical degradation of an uncrosslinked pure fluoroelastomer (FKM; Viton A) in an alkaline environment (10% NaOH and 80 °C) was investigated. Scanning electron microscopy images showed that on a microscopic level, significant degradation substantially increased the surface roughness after prolonged exposure (e.g., 12 weeks). The molecular mechanisms of the chemical degradation processes at the surface were evaluated with X‐ray photoelectron spectroscopy and attenuated total reflectance/Fourier transform infrared spectroscopy. The results revealed that the early degradation proceeded primarily via dehydrofluorination reactions, creating double bonds in the rubber backbone. This further accelerated the degradation after longer exposure times. Furthermore, the resulting double bonds underwent nucleophilic attack by an aqueous NaOH solution to form several oxygenated species. All these species ultimately recombined to form crosslinks, as evidenced by the increase in the gel fraction and surface hardness (Shore A). The pronounced effect of chemical degradation through a reduction in the thermal stability of the pure FKM rubber upon exposure was also evident from thermogravimetric analysis and differential thermogravimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6216–6229, 2004  相似文献   
63.
The structure and dynamics of a strongly asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode and the cluster mode. In the bcc phase, the PEP and the PDMS blocks form the micellar cores and the matrix, respectively. Here, two modes are observed in DLS, and the diffusion coefficients measured using pulsed field gradient (PFG) NMR are broadly distributed with the most probable diffusion coefficient coinciding with the slow DLS mode. We attribute the fast process in the bcc state to concentration fluctuations of the micellar cores (PEP), relaxing by mutual diffusion of the micelles with copolymers dissolved in the PDMS matrix. The slower process in the bcc state is ascribed to activated long-range self-diffusion of single copolymers from micelle to micelle through the PDMS matrix. This assignment is corroborated by the good coincidence of the reduced diffusivities with the ones from the literature. However, this mode may also be assigned to the rearrangement of entire micelles.This paper is dedicated to the memory of G. Fleischer  相似文献   
64.
Molybdenum forms a range of oxides with different stoichiometries and crystal structures, which lead to different properties and performance in diverse applications. Herein, crystalline molybdenum oxide thin films with controlled phase composition are deposited by atomic layer deposition. The MoO2(thd)2 and O3 as precursors enable well-controlled growth of uniform and conformal films at 200–275 °C. The as-deposited films are rough and, in most cases, consist of a mixture of α- and β-MoO3 as well as an unidentified suboxide MoOx (2.75 ≤ x ≤ 2.89) phase. The phase composition can be tuned by changing deposition conditions. The film stoichiometry is close to MoO3 and the films are relatively pure, the main impurity being hydrogen (2–7 at-%), with ≤1 at-% of carbon and nitrogen. Post-deposition annealing is studied in situ by high-temperature X-ray diffraction in air, O2, N2, and forming gas (10% H2/90% N2) atmospheres. Phase-pure films of MoO2 and α-MoO3 are obtained by annealing at 450 °C in forming gas and O2, respectively. The ability to tailor the phase composition of MoOx films deposited by scalable atomic layer deposition method represents an important step towards various applications of molybdenum oxides.  相似文献   
65.
We investigate the hydrothermal stability of cross-linked liquid silicone rubber (LSR) in water at 100 °C up to period of two years. Optical microscopy of cross-sections of the exposed samples reveal that only the outer 100 μm of the surface layer is affected after two years. However, the surface chemistry of the material after prolonged exposure becomes significantly modified, as monitored by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR), which probes depths of 10 nm and 1 μm, respectively. In addition, changes to the bulk physical properties of the rubber samples, prior to and after the exposure, were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Micro-hardness analysis showed that surface roughness of the two year exposed sample increased from 60 (IRHD) to 75 (IRHD). Furthermore, the volume change (%) measurement showed a significant decrease in the course of exposure at prolonged time. The results provide the experimental basis for development of LSR materials suitable for numerous technical applications.  相似文献   
66.
C-type cytochromes with histidine-methionine (His-Met) iron coordination play important roles in electron-transfer reactions and in enzymes. Low-temperature electron paramagnetic resonance (EPR) spectra of low-spin ferric cytochromes c can be divided into two groups, depending on the spread of g values: the normal rhombic ones with small g anisotropy and g(max) below 3.2, and those featuring large g anisotropy with g(max) between 3.3 and 3.8, also denoted as highly axial low spin (HALS) species. Herein we present the detailed magnetic properties of cytochrome c(553) from Bacillus pasteurii (g(max) 3.36) and cytochrome c(552) from Nitrosomonas europaea (g(max) 3.34) over the pH range 6.2 to 8.2. Besides being structurally very similar, cytochrome c(553) shows the presence of a minor rhombic species at pH 6.2 (6 %), whereas cytochrome c(552) has about 25 % rhombic species over pH 7.5. The detailed M?ssbauer analysis of cytochrome c(552) confirms the presence of these two low-spin ferric species (HALS and rhombic) together with an 8 % ferrous form with parameters comparable to the horse cytochrome c. Both EPR and M?ssbauer data of axial cytochromes c with His-Met iron coordination are consistent with an electronic (d(xy))(2) (d(xz))(2) (d(yz))(1) ground state, which is typical for Type I model hemes.  相似文献   
67.
Low temperature electron paramagnetic resonance (EPR) spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T have been used to study radicals and metal sites in proteins and small inorganic model complexes. We have studied radicals, Fe, Cu and Mn containing proteins. For S = 1/2 systems, the high frequency method can resolve the g-value anisotropy. It was used in mouse ribonucleotide reductase (RNR) to show the presence of a hydrogen bond to the tyrosyl radical oxygen. At 285 GHz the type 2 Cu(II) signal in the complex enzyme laccase is clearly resolved from the Hg(II) containing laccase peroxide adduct. For simple metal sites, the systems over S = 1/2 can be described by the spin Hamiltonian: H(S) = BgS + D[Sz2 - S(S + 1)/3 + E/D (Sx2 - Sy2)]. From the high frequency EPR the D-value can be determined directly by, (I) shifts of g(eff) for half-integer spin systems with large D-values as observed at 345 GHz on an Fe(II)-NO-EDTA complex, which is best described as S = 3/2 system with D = 11.5 cm(-1), E = 0.1 cm(-1) and gx = gy = gz = 2.0; (II) measuring the outermost signal, for systems with small D values, distant of (2S - 1) x absolute value(D) from the center of the spectrum as observed in S= 5/2 Fe(III)-EDTA. In Mn(II) substituted mouse RNR R2 protein the weakly interacting Mn(II) at X-band could be observed as decoupled Mn(II) at 285 GHz.  相似文献   
68.
We describe the synthesis, structure, and magnetic properties of two new complexes, one decanuclear iron(III) cluster and one hexanuclear mixed-valence manganese(II/III) cluster, where the previously unexplored polydentate ligand Bis-tris propane {(CH2OH)3CNH(CH2)3NHC(CH2OH)3} is used to link small cluster fragments into high-nuclearity complexes.  相似文献   
69.
PEG-stabilized lipid aggregates are a promising new class of model membranes in biotechnical and pharmaceutical applications. CE techniques, field-flow fractionation, light scattering, quartz crystal microbalance (QCM), and microscopic techniques were used to study aggregates composed of 1-palmitoyl-2-oleyl-sn-glycero-phosphatidylcholine (POPC) and PEG-lipid conjugates. The PEG-lipids, with PEG molar masses of 1000, 2000, and 3000, were 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-(PEG)] derivatives with either dimyristoyl (DM, 14:0) or distearoyl (DS, 18:0) acyl groups. The 80/20 mol% POPC/PEG-lipid dispersions in HEPES at pH 7.4 were extruded through 100 nm size membranes. Asymmetrical flow field-flow fractionation (AsFlFFF), photon correlation spectroscopy (PCS), and dynamic light scattering (DLS) were used to determine the sizes of POPC and the PEGylated aggregates. All methods demonstrated that the DSPEG-lipid sterically stabilized aggregates were smaller in size than pure POPC vesicles. The zeta potentials of the aggregates were measured and showed an increase from -19 mV for pure POPC to -4 mV for the POPC/DSPEG3000 aggregates. Atomic force microscopy (AFM), electron cryo-microscopy (EM), and multifrequency QCM studies were made to achieve information about the PEGylated coatings on silica. Lipid aggregates with different POPC/DSPEG3000-lipid ratios were applied as capillary coating material, and the 80/20 mol% composition was found to give the most suppressed and stable EOFs. Mixtures of low-molar-mass drugs and FITC-labeled amino acids were separated with the PEGylated aggregates as carriers (EKC) or as coating material (CEC). Detection was made by UV and LIF.  相似文献   
70.
A polystyrene/polyethyleneoxide PS/PEO homopolymer blend and a diblock copolymer were investigated by small angle neutron scattering experiments. The measured susceptibilities could be described by theories which take strong fluctuations into account. The yielded Flory‐Huggins interaction parameter Γ is different between the blend and the diblock copolymer, in accordance to previous experiments [1, 2, 3]. This important difference of Γ could make the predictability of the phase boundaries worse than 50 K. When comparing the PS/PEO samples to other systems, a systematology seems to be missing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号