首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   21篇
  国内免费   2篇
化学   488篇
晶体学   6篇
力学   16篇
数学   69篇
物理学   62篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   18篇
  2015年   24篇
  2014年   21篇
  2013年   30篇
  2012年   40篇
  2011年   46篇
  2010年   27篇
  2009年   36篇
  2008年   40篇
  2007年   32篇
  2006年   46篇
  2005年   40篇
  2004年   27篇
  2003年   33篇
  2002年   26篇
  2001年   4篇
  2000年   16篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1974年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1867年   1篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
71.
72.
During a recent design study involving a critically stressed “tongue-and-groove” type compression joint of dissimilar materials, a novel technique was conceived for nullifying the effects of an otherwise high local stress-concentration factor. In principle, the nominal stresses in the tongue-and-groove portions of the joint are forced to be uniform. For idealizedfit conditions, the stress concentration in the fillet under this stress-equalized condition is theorized to approach unity (1.00). In the present paper, experimental verification is provided.  相似文献   
73.
Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb3+) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H2O2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L−1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L−1 to 2.56 mmol L−1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H2O2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H2O2 with high sensitivity and precision.  相似文献   
74.
To describe material behaviour more precisely than nowadays, tomorrows simulation software will include multi-scale homogenisation techniques. State of the art are various scale bridging strategies, like FE-ODE, FE-Phasefield or FE2-Method. We are dealing with the FE2-Method, see [3], [4], which gives us the possibility to take the geometric, discrete micro-structure of a material into account. Furthermore, it allows to integrate enhanced continuum mechanical models. Here, we are researching on two-scale approach with poro-mechanical coupling based on the Theory of Porous Media (TPM), for more details see [1] or [2]. The framework is demanding and need a lot of computational effort. In order to receive industrial recognition, it is necessary to decrease the computation runtime. One way to go is definitely using high performance cluster. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
75.
Adsorption isotherms of single and double chain cationic surfactants with different chain length (cetyltrimethyl-, didodecyl- and dihexadecyl ammonium bromide) onto cellulose nanofibrils were determined. Nanofibrillated cellulose, also known as microfibrillated cellulose (MFC), with varying contents of carboxyl groups (different surface charge) was prepared by TEMPO-mediated oxidation followed by mechanical fibrillation. The fibril charge was characterized by potentiometric and conductometric titration. Surfactant adsorption was verified by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Wetting and adhesion of water onto fibril films was determined by contact angle measurements. Small aggregates (admicelles) of surfactant were shown to form on the nanofibril surfaces, well below critical micelle concentrations. The results demonstrate the possibility of using cationic surfactants to systematically control the degree of water wettability of cellulose nanofibrils.  相似文献   
76.
A valveless microdevice has been developed for the integration of solid phase extraction (SPE) and polymerase chain reaction (PCR) on a single chip for the short tandem repeat (STR) analysis of DNA from a biological sample. The device consists of two domains--a SPE domain filled with silica beads as a solid phase and a PCR domain with an ~500 nL reaction chamber. DNA from buccal swabs was purified and amplified using the integrated device and a full STR profile (16 loci) resulted. The 16 loci Identifiler? multiplex amplification was performed using a non-contact infrared (IR)-mediated PCR system built in-house, after syringe-driven SPE, providing an ~80-fold and 2.2-fold reduction in sample and reagent volumes consumed, respectively, as well as an ~5-fold reduction in the overall analysis time in comparison to conventional analysis. Results indicate that the SPE-PCR system can be used for many applications requiring genetic analysis, and the future addition of microchip electrophoresis (ME) to the system would allow for the complete processing of biological samples for forensic STR analysis on a single microdevice.  相似文献   
77.
The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surface-science experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10(-5) Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a new CN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solid-liquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solid-liquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.  相似文献   
78.
The nature of layers formed by cellulose nanofibrils that had been surface modified (hydrophobized) at the oil/water (o/w) interface was investigated. The aim of the study was to clarify the mechanism underlying the excellent ability of these nanoparticles to stabilize emulsions. Layers of hydrophobized nanofibrillated cellulose spread at the o/w interface were deposited on glass slides by the Langmuir-Blodgett deposition technique. Overall evaluation of layer structures was performed by image analysis based on a Quadtree decomposition of images obtained from a flatbed scanner. A more detailed characterization of the layer structures was performed by Atomic Force Microscopy (AFM), and Field-Emission Scanning Electron Microscopy (FE-SEM). The results show that nanofibrils that were able to stabilize emulsions occur as single, dispersed fibrils or form large, network-like aggregates at the o/w interface. Fibrils that were insufficiently hydrophobized and therefore did not stabilize emulsions were only partially deposited and formed small, compact aggregates. We conclude that it is likely that the network formation is the main mechanism by which the fibrils prevent coalescence of emulsion droplets.  相似文献   
79.
X-ray photoelectron spectroscopy (XPS) is used to monitor the heterogeneous reaction of hydroxyl radicals (OH) and ozone with thin films (~5 ?) of coronene. Detailed elemental and functional group analysis of the XPS spectra reveals that there is a competition between the addition of oxygenated functional groups (functionalization) and the loss of material (volatilization) to the gas phase. Measurements of the film thickness and elemental composition indicate that carbon loss is as important as the formation of new oxygenated functional groups in controlling how the oxygen-to-carbon ratio (O/C) of the coronene film evolves during the surface reaction. When the O/C ratio of the film is small (~0.1) the addition of functional groups dominates changes in film thickness, while for more oxygenated films (O/C > 0.3) carbon loss is an increasingly important reaction pathway. Decomposition of the film occurs via the loss of both carbon and oxygen atoms when the O/C ratio of the film exceeds 0.5. These results imply that chemically reduced hydrocarbons, such as primary organic aerosol, age in the atmosphere by forming new oxygenated functional groups, in contrast to oxygenated secondary organic aerosol, which decompose by a heterogeneous loss of carbon and/or oxygen.  相似文献   
80.
We show that the value function of a singular stochastic control problem is equal to the integral of the value function of an associated optimal stopping problem. The connection is proved for a general class of diffusions using the method of viscosity solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号