首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270628篇
  免费   2247篇
  国内免费   988篇
化学   131225篇
晶体学   4026篇
力学   14358篇
综合类   4篇
数学   49569篇
物理学   74681篇
  2018年   11475篇
  2017年   11243篇
  2016年   8206篇
  2015年   2505篇
  2014年   2671篇
  2013年   8113篇
  2012年   8890篇
  2011年   16791篇
  2010年   9904篇
  2009年   10216篇
  2008年   12359篇
  2007年   14614篇
  2006年   6127篇
  2005年   6674篇
  2004年   6429篇
  2003年   6330篇
  2002年   5256篇
  2001年   6002篇
  2000年   4654篇
  1999年   3652篇
  1998年   2923篇
  1997年   2908篇
  1996年   2913篇
  1995年   2631篇
  1994年   2469篇
  1993年   2380篇
  1992年   2832篇
  1991年   2722篇
  1990年   2660篇
  1989年   2697篇
  1988年   2636篇
  1987年   2641篇
  1986年   2455篇
  1985年   3315篇
  1984年   3323篇
  1983年   2750篇
  1982年   2951篇
  1981年   2889篇
  1980年   2798篇
  1979年   2939篇
  1978年   3171篇
  1977年   2977篇
  1976年   2909篇
  1975年   2767篇
  1974年   2711篇
  1973年   2740篇
  1972年   1776篇
  1968年   1939篇
  1967年   2140篇
  1966年   1938篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   
32.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   
33.
The title compound was extracted from a natural product and its structure was characterized by an X-ray diffraction method. It crystallizes in the tetragonal space group P41 with cell parameters a = 15.832(10)A, c = 11.622(10)A, Z = 4; the final residual factor is R1 = 0.0769. The structure has both intra and intermolecular hydrogen bonds.  相似文献   
34.
Controlled precipitation of the diagnostic imaging agent ethyl 3,5-di(acetylamino)-2,4,6-triiodobenzoate has been used to produce fine particles of various sizes, morphologies, and degrees of crystallinity, which depended on experimental conditions. In addition, two distinct polymorphic forms of the drug have been fully characterized by single crystal X-ray diffraction studies, and evidence for a third polymorph was also observed. Some of the so prepared dry particles were coated with a thin layer of silica.  相似文献   
35.
36.
If 1≤kn, then Cor(n,k) denotes the set of all n×n real correlation matrices of rank not exceeding k. Grone and Pierce have shown that if A∈Cor (n, n-1), then per(A)≥n/(n-1). We show that if A∈Cor(n,2), then , and that this inequality is the best possible.  相似文献   
37.
Crystals of Saccharomyces cerevisiae inorganic pyrophosphatase suitable for X-ray diffraction study were grown by cocrystallization of the enzyme with cobalt chloride and imidodiphosphate. Saccharomyces cerevisiae is a metal-dependent enzyme which catalyzes hydrolysis of inorganic pyrophosphate to orthophosphate. The three-dimensional structure of this enzyme was solved by the molecular-replacement method and refined at 1.8 Å resolution to an R factor of 19.5%. Cobalt and phosphate ions were revealed in the active centers of both identical subunits (A and B) of the pyrophosphatase molecule. In subunit B, a water molecule was found between two cobalt ions. It is believed that this water molecule acts as an attacking nucleophile in the enzymatic cleavage of the pyrophosphate bond. It was demonstrated that cobalt ions and a phosphate group occupy only part of the potential binding sites (two chemically identical and crystallographically independent subunits have different binding sites). The arrangement of ligands and the structure of the nucleophile-binding site are discussed in relation to the mechanism of action of the enzyme and the nature of the metal activator.  相似文献   
38.
A neural-network-based method is offered to determine the flutter derivatives of section models under smooth and turbulent flows. The approach uses the observed dynamic responses to train an appropriate neural network. Subsequently, the modal parameters of the model for different mean velocities of wind flow are directly estimated using weight matrices in the neural network. The flutter derivatives can then be determined accurately. The validity of the present method is verified through numerical studies. Finally, the procedure is employed to process experimental data from an inverted-U-type section model, obtained from wind tunnel tests.  相似文献   
39.
40.
Chemical interactions at the phase boundaries of materials applied for the solid oxide fuel cell (SOFC) have been studied by EPMA. The chemical reactivity at the interface of Lay-xSrxMnO3/ZrO2-Y2O3 is dependent on the stoichiometry (y) and the Sr content (x) of the perovskite. Typical reaction products (zirconates) and a diffusion zone in the ZrO2–Y2O3 have been observed. The extension of cation release (Mn) is related to the increasing chemical activity of Mn oxide in the perovskite by the Sr substitution for La. The wettability of the metal/oxide interface in the anode cermet (Ni/ZrO2–Y2O3) has been found to be influenced by chemical reactions resulting from the applied reducing atmosphere with high carbon activity. The disintegration of ZrO2–Y2O3 in contact with molten Ni or Ni-Ti and Ni-Cr alloys leads to the redeposition of Y2O3-enriched oxides and also to Zr-rich intermetallic compounds and eutectics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号