首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
化学   20篇
力学   1篇
数学   2篇
物理学   23篇
  2015年   2篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
31.
The thermal properties—specific heat, thermal conductivity, and thermal expansion coefficients—of a single crystal of quasi-one-dimensional variable-valence β-Na0.33V2O5 compound were studied. With lowering temperature, it sequentially undergoes the structural (T S ~ 230 K), charge (T C ~ 136 K), and magnetic (T N ~ 22 K) phase transitions. The structural transition at T S , resulting in the ordering of the Na ions, and the charge ordering at T C , resulting in the charge redistribution over the positions of V ions, are accompanied by the anomalies in the temperature dependences of all the studied properties. The magnetic ordering at T N results in the appearance of the canted antiferromagnetic structure and manifests itself only in the anomaly in the temperature dependences of the thermal expansion coefficients.  相似文献   
32.
An algorithm for partially relaxing multiwell energy densities, such as for materials undergoing martensitic phase transitions, is presented here. The detection of the rank-one convex hull, which describes effective properties of such materials, is carried out for the most prominent nontrivial case, namely the so-called Tk-configurations. Despite the fact that the computation of relaxed energies (and with it effective properties) is inherently unstable, we show that the detection of these hulls (T4-configurations) can be carried out exactly and with high efficiency. This allows in practice for their computation to arbitrary precision. In particular, our approach to detect these hulls is not based on any approximation or grid-like discretization. This makes the approach very different from previous (unstable and computationally expensive) algorithms for the computation of rank-one convex hulls or sequential-lamination algorithms for the simulation of martensitic microstructure. It can be used to improve these algorithms. In cases where there is a strict separation of length scales, these ideas can be integrated at a sub-grid level to macroscopic finite-element computations. The algorithm presented here enables, for the first time, large numbers of tests for T4-configurations. Stochastic experiments in several space dimensions are reported here. To cite this article: C.-F. Kreiner et al., C. R. Mecanique 332 (2004).  相似文献   
33.
Die Übersetzung basiert auf den „Definitions of Terms for Diffusion in the Solid State“ der Commission on High Temperature Materials and Solid State Chemistry der International Union of Pure and Applied Chemistry, veröffentlicht in Pure Appl. Chem. 1999 , 71, 1307–1325. Das Original wurde von M. Kizilyalli (Middle East Technical University, Ankara, Türkei), J. Corish (Trinity College, University of Dublin, Irland) und R. Metselaar (Technische Universiteit Eindhoven, Niederlande) für die Veröffentlichung vorbereitet.  相似文献   
34.
The title compounds were prepared starting from pyrrolinone 4 . Nucleophilic‐displacement and ring‐closure reactions yielded the dithiolopyrrole 5a , which formed salts with electrophiles ( 7, 8 ) as well as with bases. The crystal structure of 5a was determined. Oxidation of the dithioles 5a and 6a led to S(2)‐oxides ( 10a, 11a ) and the corresponding S(2)‐dioxides ( 10b, 11b ) depending on reaction conditions. The thiosulfinate 10a was converted by a ring‐opening/ring‐closure reaction sequence to the bicyclic sulfinamide 12 . The oxidative addition reactions of [Pt(η2‐C2H4) (PPh3)2] ( 14 ) with the disulfides 5a and 13 led to the dithiolatoplatinum(II) complexes 15 and 16 , respectively. Complex 16 was characterized structurally. The sulfenato‐thiolato complex 17 was synthesized via reaction of 14 with the thiosulfinate 10a . The thiosulfonato PtII complex 18 was prepared by an oxidative insertion of Pt0 into the C? S bond of the corresponding thiosulfonate 10b . Furthermore, complex 18 was characterized by single‐crystal X‐ray‐diffraction studies.  相似文献   
35.
36.
37.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   
38.
39.
Synthesis and Crystal Structure of Manganese(II) and Zinc Amides, Mn(NH2)2 and Zn(NH2)2 Metal powders of manganese resp. zinc react with supercritical ammonia in autoclaves in the presence of a mineralizer Na2Mn(NH2)4 resp. Na2Zn(NH2)4_.0.5NH3 to well crystallized ruby‐red Mn(NH2)2 (p(NH3) = 100 bar, T = 130°C, 10 d) resp. colourless Zn(NH2)2 (p(NH3) = 3.8 kbar, T = 250°C, 60 d). The structures including all H‐positions were solved by x‐ray single crystal data: Mn(NH2)2: I41/acd, Z = 32, a = 10.185(6) Å, c = 20.349(7) Å, N(Fo) with F > 3σ (F) = 313, N(parameter) = 45, R/Rw = 0.038/0.043. Zn(NH2)2: I41/acd, Z = 32, a = 9.973(3) Å, c = 19.644(5) Å, N(Fo) with F > 3σ (F) = 489, N(parameter) = 45, R/Rw = 0.038/0.043. Both compounds crystallize isotypic with Mg(NH2)2 [1] resp. Be(NH2)2 [2]. Nitrogen of the amide ions is distorted cubic close packed. One quarter of tetrahedral voids is occupied by Mn2+‐ resp. Zn2+‐ions in such an ordered way that units M4(NH2)6(NH2)4/2 occur. The H‐atoms of the anions have such an orientation that the distance to neighboured cations is optimum.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号