首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   22篇
  国内免费   2篇
化学   544篇
晶体学   9篇
力学   10篇
数学   77篇
物理学   156篇
  2023年   7篇
  2022年   14篇
  2021年   8篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2016年   7篇
  2015年   17篇
  2014年   13篇
  2013年   38篇
  2012年   71篇
  2011年   63篇
  2010年   26篇
  2009年   15篇
  2008年   59篇
  2007年   53篇
  2006年   62篇
  2005年   52篇
  2004年   41篇
  2003年   34篇
  2002年   26篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   8篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1980年   3篇
  1979年   3篇
  1977年   4篇
  1974年   4篇
  1961年   3篇
  1960年   3篇
  1944年   2篇
  1941年   4篇
  1939年   3篇
  1937年   2篇
  1936年   2篇
  1907年   5篇
排序方式: 共有796条查询结果,搜索用时 0 毫秒
71.
72.
Described herein is the development of practical routes to 8‐aminoquinolines by using readily installable and easily deprotectable amidating reagents. Two scalable procedures were optimized under RhIII‐catalyzed conditions: i) the use of pre‐generated chlorocarbamates and ii) a two‐step one‐pot process that directly employs carbamates. Both approaches are highly convenient for the gram‐scale synthesis of 8‐aminoquinolines under mild conditions. Facile deprotection of the synthetically versatile amidating groups was achieved under the Pd‐catalyzed transfer hydrogenation conditions with simultaneous deoxygenation of quinoline N‐oxides, thus yielding 8‐aminoquinolines in excellent overall efficiency.  相似文献   
73.
The microenvironments of a leucine‐based organogel are probed by monitoring the fluorescence behavior of coumarin 153 (C153) and 4‐aminophthalimide (AP). The steady‐state data reveals distinctly different locations of the two molecules in the gel. Whereas AP resides close to the hydroxyl moieties of the gelator and engages in hydrogen‐bonding interactions, C153 is found in bulk‐toluene‐like regions. In contrast to C153, AP exhibits excitation‐wavelength‐dependent emission, indicating that the environments of the hydrogen‐bonded AP molecules are not all identical. A two‐component fluorescence decay of AP in gel, unlike C153, supports this model. A time‐resolved fluorescence anisotropy study of the rotational motion of the molecules also reveals the strong association of only AP with the gelator. That AP influences the critical gelation concentration implies its direct involvement in the gel‐formation process. The results highlight the importance of guest–gelator interactions in gels containing guest molecules.  相似文献   
74.
The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single‐molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell‐protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on–off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core‐only QDs than for core–shell QDs.  相似文献   
75.
Lithium, used in conjunction with sodium metal, produces a high yield of carbazole when reacted with phenothiazine-5-oxide or phenothiazine-5,5-dioxide. A high yield of 9-ethylcarbazole is also produced when these reagents react with 10-ethylphenothiazine, 10-ethylphenothiazine-5-oxide, and 10-ethylphenothiazine-5,5-dioxide. Degassed Raney nickel produces carbazole in high yield when reacted with phenothiazine and phenothiazine-5-oxide. A moderate yield of 9-ethylcarbazole is produced when n-butyllithium is reacted with 10-ethylphenothiazine-5-oxide.  相似文献   
76.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   
77.
78.
Isoreticular metal-organic framework-3 (IRMOF-3) has been postsynthetically modified with isocyanates to generate unprecedented, microporous urea-functionalized frameworks.  相似文献   
79.
Several approaches for utilizing dipolar recoupling solid-state NMR (ssNMR) techniques to determine local structure at high resolution in peptides and proteins have been developed. However, many of these techniques measure only one torsion angle or are accurate for only certain classes of secondary structure. Additionally, the efficiency with which these dipolar recoupling experiments suppress the deleterious effects of chemical shift anisotropy (CSA) at high magnetic field strengths varies. Dipolar recoupling with a windowless sequence (DRAWS) has proven to be an effective pulse sequence for exciting double-quantum (DQ) coherences between adjacent carbonyl carbons along the peptide backbone. By allowing this DQ coherence to evolve, it is possible to measure the relative orientations of the CSA tensors and subsequently use this information to determine the Ramachandran torsion angles phi and psi. Here, we explore the accuracies of the assumptions made in interpreting DQ-DRAWS data and demonstrate their fidelity in measuring torsion angles corresponding to a variety of secondary structures irrespective of hydrogen-bonding patterns. It is shown how a simple choice of isotopic labels and experimental conditions allows accurate measurement of backbone secondary structures without any prior knowledge. This approach is considerably more sensitive for determining structure in helices and has comparable accuracy for beta-sheet and extended conformations relative to other methods. We also illustrate the ability of DQ-DRAWS to distinguish between structures in heterogeneous samples.  相似文献   
80.
Although lipids contribute to cancer drug resistance, it is challenging to target diverse range of lipids. Here, we show enzymatically inserting exceedingly simple synthetic lipids into membranes for increasing membrane tension and selectively inhibiting drug resistant cancer cells. The lipid, formed by conjugating dodecylamine to d -phosphotyrosine, self-assembles to form micelles. Enzymatic dephosphorylation of the micelles inserts the lipids into membranes and increases membrane tension. The micelles effectively inhibit a drug resistant glioblastoma cell (T98G) or a triple-negative breast cancer cell (HCC1937), without inducing acquired drug resistance. Moreover, the enzymatic reaction of the micelles promotes the accumulation of the lipids in the membranes of subcellular organelles (e.g., endoplasmic reticulum (ER), Golgi, and mitochondria), thus activating multiple regulated cell death pathways. This work, in which for the first time membrane tension is increased to inhibit cancer cells, illustrates a new and powerful supramolecular approach for antagonizing difficult drug targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号