首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
化学   94篇
数学   1篇
物理学   15篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   10篇
  2011年   13篇
  2008年   6篇
  2007年   6篇
  2006年   13篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1988年   2篇
  1983年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   5篇
  1972年   2篇
  1969年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
51.
Redox active cyclopeptides Fc[CSA]2 (5), Fc[Gly-CSA]2 (6), Fc[Ala-CSA]2 (7), Fc[Val-CSA](2) and Fc[Leu-CSA]2 (9) (CSA = cysteamine) which are formed by the reaction of ferrocenedicarboxylic acid with peptide cystamines at high dilutions. These systems exhibit H-bonding involving the amide NH in solution as shown by their temperature dependent NMR spectra. With the exception of 5, the ferrocene macrocycles display intramolecular N...O cross-ring H-bonding in the solid state involving the amino acids proximal to the ferrocene.  相似文献   
52.
Nature has specifically designed proteins, as opposed to DNA, for electron transfer. There is no doubt about the electron transfer within proteins compared with the uncertain and continuing debate about charge transfer through DNA. However, the exact mechanism of electron transfer within peptide systems has been a source of controversy. Two different mechanisms for electron transfer between a donor and an acceptor, electron hopping and bridge-assisted superexchange, have been proposed, and are supported by experimental evidence and theoretical calculations. Several factors were found to affect the kinetics of this process, including peptide chain length, secondary structure and hydrogen bonding. Electrochemical measurements of surface-supported peptides have contributed significantly to the debate. Here we summarize the current approaches to the study of electron transfer in peptides with a focus on surface measurements and comment on these results in light of the current and often controversial debate on electron transfer mechanisms in peptides.  相似文献   
53.
54.
Self-assembled monolayers (SAMs) of ferrocene-labeled α-helical peptides were prepared on gold surfaces and studied using electrochemical surface plasmon resonance (EC-SPR). The leucine-rich peptides were synthesized with a cysteine sulfhydryl group either at the C- or N-terminus, enabling their immobilization onto gold surfaces with control of the direction of the molecular dipole moment. Two electroactive SAMs were studied, one in which all of the peptide dipole moments are oriented in the same direction (SAM1), and the other in which the peptide dipole moment of one peptide is aligned in the opposite direction to that of its surrounding peptide molecules (SAM2). Cyclic voltammetry combined with SPR measurements revealed that SAM reorientations concomitant with the oxidation of the ferrocene label were more significant in SAM2 than in SAM1. The substantially greater change in the peptide film thickness in the case of SAM2 is attributed to the electrostatic repulsion between the electrogenerated ferrocinium moiety and the positively charged gold surface. The greater permeability of SAM1 to electrolyte anions, on the other hand, appears to effectively neutralize this electrostatic repulsion. The film thickness change in SAM2 was estimated to be 0.25 ± 0.05 nm using numerical simulation. The timescale of the redox-induced SPR changes was established by chronoamperometry and time-resolved SPR measurements, followed by fitting of the SPR response to a stretched exponential function. The time constants measured for the anodic process were 16 and 6 ms for SAM1 and SAM2 respectively, indicating that the SAM thickness changes are notably fast.  相似文献   
55.
56.
The self‐assembly and gelation behavior of a series of mono‐ and disubstituted ferrocene (Fc)–peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene–peptide conjugates self‐assemble into organogels by controlling the conformation of the central ferrocene core, through inter‐ versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO–L FL FL A‐OMe and FcCO–L FL FD A‐OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO–D FL FL A‐OMe and FcCO–L FD FL A‐OMe exclusively produced straight nanorods and non‐interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO‐FFA‐OMe]2 were constructed for the study of chirality‐organized structures.  相似文献   
57.
荧光寿命的快速傅里叶变换拟合方法   总被引:5,自引:2,他引:5  
介绍了一种利用快速傅里叶变换算法对稀土掺杂物质的荧光寿命进行数据拟合的方法。稀土掺杂物质可用来制备多种光学传感器,用于温度、pH值等多种参量测量领域。本方法利用快速傅里叶变换(FFT)结果作为基础,从非零项的相位角的正切值得出被测的荧光寿命,具有速度快、误差小、不受本底干扰等一系列优点。以掺铒光纤为例,通过数字仿真将本方法与其它几种传统的拟合方法进行了比较。快速傅里叶变换方法的测量偏差不到Prony方法的50%,为对数似合(log-fit)方法测量偏差的1/6。另外,快速傅里叶变换方法由于不受本底噪声影响,可以不必在信号处理时去掉本底噪声,因而可以明显缩短测量时间。  相似文献   
58.
59.
Two peptide-oligonucleotide conjugates are studied using an α-hemolysin nanopore to investigate their structural properties at the single-molecule level.  相似文献   
60.
Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature M?ssbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号