首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   20篇
化学   165篇
晶体学   7篇
力学   12篇
数学   11篇
物理学   66篇
  2023年   7篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   12篇
  2015年   12篇
  2014年   13篇
  2013年   17篇
  2012年   22篇
  2011年   28篇
  2010年   12篇
  2009年   15篇
  2008年   19篇
  2007年   13篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1984年   1篇
  1973年   1篇
  1943年   1篇
  1930年   1篇
  1928年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
31.
A 2D coordination compound {[Cu2(HL)(N3)]?ClO4} ( 1 ; H3L=2,6‐bis(hydroxyethyliminoethyl)‐4‐methyl phenol) was synthesized and characterized by single‐crystal X‐ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]?2H2O ( 2 ); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19‐fold Zn2+‐selective chelation‐enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.  相似文献   
32.
The electrodynamic screen, or EDS, was first introduced to the electrostatics community in the early 1970's. Since that time, it has been studied by several research groups who have investigated its use as a means to remove unwanted particles from insulator surfaces. In the typical EDS, interdigitated electrodes are embedded or deposited on the surface, then energized by three-phase square or sinusoidal voltages of magnitude 500–1200 V at frequencies between 5 and 200 Hz. The resulting electric field entrains previously deposited particles and moves them laterally across the surface. Electrodynamic screens have been proposed for use on solar cells in Mars and Moon space missions, as well as the removal of dust from renewable-energy solar collectors such as photovoltaic panels, solar reflectors, and mirrors. Though often considered merely a nuisance, dust has the potential to partially or totally obscure the solar flux incident on any solar collector.Development of EDS technology has evolved mostly from a “trial and error” approach to choosing such parameters as electrode spacing, depth, and width, as well as voltage magnitude and frequency. Though some theoretical studies may be found in the literature, a more detailed understanding would be valuable in optimizing EDS performance for a particular application and composition of ambient dust, which may vary with geographical location with respect to size, permittivity, and conductivity. A theoretical understanding of how particles are entrained and made to move on an EDS will facilitate proper choice of relevant parameters in future EDS systems. Our work thus attempts to analyze the motion of dust particles subject to all the forces encountered at the surface of an EDS, including the coulomb and dielectrophoretic forces, as well as aerodynamic drag, gravity, and friction. Previous work has shown that particles entrained in the traveling-wave electrostatic field of an EDS exhibit one of two behaviors: ordered, lateral motion; and semi-chaotic motion. These two behaviors have been found both experimentally and in theoretical simulations. This paper attempts to correlate trajectory computations with video observations of these behaviors as recorded in a laboratory setting.  相似文献   
33.
34.
Lewis acid catalyzed addition of active methylene compounds to mucochloric acid (1) and mucobromic acid (2) affording Knoevenagel aldol adducts, gamma-substituted gamma-butenolides, has been explored. Catalytic efficiencies of various Lewis acids have been compared. Indium acetate (0.25-5 mol %) was found to be the most efficient catalyst.  相似文献   
35.
Morphological transformation during evaporation-induced self-assembly of a mixed colloidal suspension in micrometric droplets has been investigated. It has been demonstrated that a buckling-driven shape transition of drying droplets of mixed colloidal suspension takes place during evaporation-induced self-assembly. Further, it is also shown that the distortion modulations get significantly amplified with enhancement in volume fraction of anisotropic soft colloidal component of the mixed colloids. It has been argued that the reduction in elastic modulus of formed shell, at the boundary of a drying droplet, and the anisotropic nature of one of the colloidal components facilitate the deformation process. Hierarchical structures of these assembled colloidal grains have been probed using electron microscopy and scattering techniques.  相似文献   
36.
An efficient, metal-free, catalyst-free and solvent-free methodology for the reductive amination of levulinic acid with different anilines has been developed using HBpin as the reducing reagent. This protocol offers an excellent method to avoid solvents and added catalysts on the synthesis of different kinds of N-substituted pyrrolidones under metal free conditions. It is also the first report for the synthesis of different pyrrolidones by solvent-free as well as catalyst-free methods. The proposed mechanism for the formation of pyrrolidone has been supported by DFT calculations and control experiments.  相似文献   
37.
38.
A mixed ligand approach was exploited to synthesize a new series of MnII‐based coordination polymers (CPs), namely, CP1 {[Mn(μ‐dpa)(μ‐4,4′‐bp)]?MeOH}, CP2 {[Mn3(μ‐dpa)3(2,2′‐bp)2]}, CP3 {[Mn3(μ‐dpa)3(1,10‐phen)2]?2 H2O}, CP4 {[Mn(μ‐dpa)(μ‐4,4′‐bpe)1.5]?H2O}, CP5 {[Mn2(μ‐dpa)2(μ‐4,4′‐bpe)2]? DEF}, and CP6 {[Mn(μ‐dpa)(μ‐4,4′‐bpe)1.5]? DMA} (dpa=3,5‐dicarboxyphenyl azide, 2,2′‐bp=2,2′‐bipyridine, 1,10‐phen=1,10‐phenanthroline, 4,4′‐bpe=1,2‐bis(4‐pyridyl)ethylene, 4,4′‐bp=4,4′‐bipyridine, DEF=N,N‐diethylformamide, DMA=N,N‐dimethylacetamide), to develop multifunctional CPs. Various techniques, such as single‐crystal X‐ray diffraction (SXRD), FTIR spectroscopy, elemental analysis, and thermogravimetric analysis, were employed to fully characterize these CPs. The majority of the CPs displayed a four‐connected sql topology, whereas CP4 and CP6 exhibited a two‐dimensional SnS network architecture, which was further entangled in a polycatenation mode. Compound CP1 displayed an open framework structure. The CPs were scaled down to the nanoregime in a ball mill for cell imaging studies. Whereas CP2 and CP4 were employed for cell imaging with RAW264.7 cells, CP1 was exploited for both cell imaging and heterogeneous catalysis in a cyanosilylation reaction.  相似文献   
39.
The properties of an isothiocyanato liquid crystal compound (code name S1) has been studied with a view to compare its behavior with that of another member of its homologous series (code name S5). Optical properties, such as refractive index, polarisability, and their anisotropies, have been evaluated with varying temperature and the orientational order experimentally determined from the study of polarisability anisotropy and compared with theoretically computed values. Dielectric studies have been conducted to determine not only the dielectric anisotropy but also the effective molecular dipole moment and its temperature dependence. The temperature variation of the angle of inclination (β) of molecular dipole moment with the director direction has also been determined and compared with that of S5. In order to determine the nature of molecular association in the mesophase, the molecular correlation factor (g) has been estimated from the measurements of dipole moments of compound in solution and compared with the values obtained for S5.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号