首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1301篇
  免费   56篇
  国内免费   2篇
化学   855篇
晶体学   31篇
力学   39篇
数学   134篇
物理学   300篇
  2024年   6篇
  2023年   15篇
  2022年   32篇
  2021年   33篇
  2020年   34篇
  2019年   23篇
  2018年   32篇
  2017年   26篇
  2016年   54篇
  2015年   49篇
  2014年   41篇
  2013年   104篇
  2012年   98篇
  2011年   92篇
  2010年   57篇
  2009年   44篇
  2008年   76篇
  2007年   52篇
  2006年   57篇
  2005年   55篇
  2004年   48篇
  2003年   36篇
  2002年   30篇
  2001年   19篇
  2000年   17篇
  1999年   8篇
  1998年   11篇
  1996年   8篇
  1995年   9篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   7篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1978年   11篇
  1977年   9篇
  1976年   10篇
  1975年   10篇
  1973年   4篇
  1966年   4篇
  1958年   4篇
  1957年   4篇
排序方式: 共有1359条查询结果,搜索用时 0 毫秒
41.
42.
The geometry dependent resistance models are used to estimate the effective thermal conductivity of two-phase materials based on the unit cell approach. The algebraic equations are derived based on isotherm approach for various geometries. The effective thermal conductivity of the above models are found and compared with experimental data with a minimum and maximum deviation of ±3.976 and ±19.55%, respectively. The present models are good agreement with experimental results.  相似文献   
43.
A recently discovered 2D transition titanium metal carbides also called as MXenes (Ti3C2Tx)-based nanocomposite was prepared with Cu2O through wet precipitation technique, and these materials were further developed as the electrode for sensing glucose by chronoamperometry technique. The prepared MXene-Cu2O (Ti3C2Tx-Cu2O) nanocomposite was characterized by XRD, FTIR, UV–Vis spectroscopy, FE-SEM, EDAX, and Raman spectroscopy. Morphological studies of the composites revealed that the micro-octahedral shape of Cu2O is distributed on the surface of MXene with size larger than bare Cu2O. Further, the prepared composite material was fabricated as a sensing probe, and the electrochemical activities were examined by cyclic voltammetric analysis (CV) and chronoamperometric (CA) methods. From the CV and CA investigation, the current response was higher for the composite than the bare material (Cu2O & MXene) in the presence of glucose. The amperometric investigation of MXene-Cu2O composite for the detection of glucose shows a broad linear range (0.01–30 mM) with a sensitivity of 11.061/μAmM cm?2 and a detection limit of 2.83 μM. Further, the fabricated sensor exhibits good selectivity with interfering species like NaCl, fructose, sucrose, urea, ascorbic acid, lactose, short response time, stability, good reproducibility, and compatibility with human serum sample. From the investigation, the prepared MXene-Cu2O composite is a good candidate for the direct detection of glucose molecules and is also well suitable for clinical diagnosis.  相似文献   
44.
Designed and synthesized a new highly water soluble N,N1-bis(2-((5-((dimethylamino)methyl)furan-2-yl)methylthio)ethyl)-perylene -3,4,9,10-tetracarboxylic diimide from 2-((5-((dimethylamino)methyl)furan-2-yl)methylthio)ethanamine and perylene-3,4,9,10- tetracarboxylic dianhydride.The compound was characterized by 1H,13C,2D NMR,mass and IR techniques.The compound is highly fluorescent with good solubility in water and other polar solvents.  相似文献   
45.
Chemical recycling of plastic wastes is top among the effective management of the solid wastes. Particularly the post-consumer polyethylene terephthalate (PET) plastic wastes mainly generated from the disposal of beverage bottles and placed third most produced polymeric waste. However, PET wastes could be chemically recycled using several types of homo-/heterogeneous acid or base catalysts, and an effective recycling process has yet to be achieved. Therefore, the present short review is intended to display recent reports on the depolymerization of PET polymer wastes. The review aimed to cover glycolysis and aminolytic depolymerization using various catalytic systems. There is a wide spectrum of catalytic systems such as metal oxides, ionic liquids, organic bases, nanoparticles, porous materials and microwave-assisted rapid depolymerization methods have been developed toward the yield enhancement of the depolymerized products. Ideologically, the present review would benefit the researchers in familiarizing themselves with the latest developments in this field.  相似文献   
46.
Relaxation dynamics of plasmons in Au−SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.  相似文献   
47.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   
48.
Applied Biochemistry and Biotechnology - The malic enzyme gene ofAscaris suum was cloned into the vector pTRC99a in two forms encoding alternative arnino-termini. The resulting plasmids, pMEAl and...  相似文献   
49.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   
50.
The marine-facultative Aspergillus sp. MEXU 27854, isolated from the Caleta Bay in Acapulco, Guerrero, Mexico, has provided an interesting diversity of secondary metabolites, including a series of rare dioxomorpholines, peptides, and butyrolactones. Here, we report on the genomic data, which consists of 11 contigs (N50~3.95 Mb) with a ~30.75 Mb total length of assembly. Genome annotation resulted in the prediction of 10,822 putative genes. Functional annotation was accomplished by BLAST searching protein sequences with different public databases. Of the predicted genes, 75% were assigned gene ontology terms. From the 67 BGCs identified, ~60% belong to the NRPS and NRPS-like classes. Putative BGCs for the dioxomorpholines and other metabolites were predicted by extensive genome mining. In addition, metabolomic molecular networking analysis allowed the annotation of all isolated compounds and revealed the biosynthetic potential of this fungus. This work represents the first report of whole-genome sequencing and annotation from a marine-facultative fungal strain isolated from Mexico.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号