首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2288篇
  免费   96篇
  国内免费   10篇
化学   1891篇
晶体学   16篇
力学   27篇
数学   107篇
物理学   353篇
  2023年   8篇
  2022年   13篇
  2021年   23篇
  2020年   34篇
  2019年   38篇
  2018年   32篇
  2017年   22篇
  2016年   55篇
  2015年   50篇
  2014年   57篇
  2013年   98篇
  2012年   118篇
  2011年   179篇
  2010年   79篇
  2009年   89篇
  2008年   181篇
  2007年   162篇
  2006年   159篇
  2005年   131篇
  2004年   126篇
  2003年   111篇
  2002年   96篇
  2001年   26篇
  2000年   38篇
  1999年   35篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   14篇
  1994年   25篇
  1993年   17篇
  1992年   14篇
  1991年   11篇
  1990年   14篇
  1989年   11篇
  1988年   11篇
  1987年   19篇
  1986年   11篇
  1985年   21篇
  1984年   27篇
  1983年   13篇
  1982年   25篇
  1981年   18篇
  1980年   9篇
  1979年   14篇
  1978年   11篇
  1977年   8篇
  1976年   8篇
  1975年   12篇
  1973年   15篇
排序方式: 共有2394条查询结果,搜索用时 31 毫秒
71.
The selective synthesis of tetracoordinate square-planar low-spin nickel(II)-semiquinonato (Ni(II)-SQ) and nickel(III)-catecholato (Ni(III)-Cat) complexes, 1 and 2, respectively, was achieved by using bidentate ligands with modulated nitrogen-donor ability to the nickel ion. The electronic structures of 1 and 2 were revealed by XPS and EPR measurements. The absorption spectra of 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), are completely different from those in tetrahydrofuran (THF), being a coordinating solvent. As expected from this result, the gradual addition of N,N-dimethylformamide (DMF), which is also a coordinating solvent like THF, into a solution of 1 or 2 in CH2Cl2 leads to color changes from blue (for 1) and brown (for 2) to light green, which is the same color observed for solutions of 1 or 2 in THF. Furthermore, the same color changes are induced by varying the temperature. Such spectral changes are attributable to the transformation from square-planar low-spin Ni(II)-SQ and Ni(III)-Cat complexes to octahedral high-spin Ni(II)-SQ ones, caused by the coordination of two solvent molecules to the nickel ion.  相似文献   
72.
Structures of Cu(I) and Cu(II) complexes of sterically hindered tripyridine ligands RL = tris(6-methyl-2-pyridyl)methane (HL), 1,1,1-tris(6-methyl-2-pyridyl)ethane (MeL), and 1,1,1-tris(6-methyl-2-pyridyl)propane (EtL), [Cu(RL)(MeCN)]PF(6) (1-3), [Cu(RL)(SO(4))] (4-6), and [Cu(RL)(NO(3))(2)] (7-9), have been explored in the solid state and in solution to gain some insights into modulation of the copper coordination structures by bridgehead alkyl groups (CH, CMe, and CEt). The crystal structures of 1-9 show that RL binds a copper ion in a tridentate facial-capping mode, except for 3, where EtL chelates in a bidentate mode with two pyridyl nitrogen atoms. To avoid the steric repulsion between the bridgehead alkyl group and the 3-H(py) atoms, the pyridine rings in Cu(I) and Cu(II) complexes of MeL and EtL shift toward the Cu side as compared to those in Cu(I) and Cu(II) complexes of HL, leading to the significant differences in the nonbonding interatomic distances, H.H (between the 3-H(py) atoms), N.N (between the N(py) atoms), and C.C (between the 6-Me carbon atoms), the Cu-N(py), Cu-N(MeCN), and Cu-O bond distances, and the tilt of the pyridine rings. The copper coordination geometries in 4-6, where a SO(4) ligand chelates in a bidentate mode, are varied from a square pyramid of 4 to distorted trigonal bipyramids of 5 and 6. Such structural differences are not observed for 7-9, where two NO(3) ligands coordinate in a monodentate mode. The structures of 1-9 in solution are investigated by means of the electronic, (1)H NMR, and ESR spectroscopy. The (1)H NMR spectra show that the structures of 1-3 in the solid state are kept in solution with rapid coordination exchange of the pyridine rings. The electronic and the ESR spectra reveal the structural changes of 5 and 6 in solution. The bridgehead alkyl groups and 6-Me groups in the sterically hindered tripyridine ligand play important roles in modulating the copper coordination structures.  相似文献   
73.
74.
Three new terpyridine-based dinuclear complexes, [(tpy)Ru(azotpy)Ru(tpy)]4+ (tpy = 2,2':6',2'-terpyridine, azotpy = bis[2,6-bis(2-pyridyl)-4-pyridyl]diazene), [(tpy)Os(azotpy)Os(tpy)]4+, and [(tpy)Ru(azotpy)Os(tpy)]4+ were prepared and their electrochemical and photophysical properties investigated. The bridging ligand, azotpy, in these complexes is reduced at less negative potentials than the unsubstituted tpy ligand. These complexes exhibit absorption bands due to the metal-to-ligand charge-transfer transitions both to the unsubstituted tpy ligand and the bridging azotpy ligand, the latter absorption being observed at the lower energy side of the former. These observations are consistent with the lower lying pi* level of the azotpy ligand than that of the tpy ligand. These complexes are nonluminescent, since the excited electron is trapped in this lower lying pi* level of the azotpy ligand in the excited state. Reduction of this bridging ligand by constant potential electrolysis renders the shape of absorption spectra for these complexes nearly identical to those of the parent complexes, [M(tpy)2]2+ (M = Ru, Os). In this reduced state, the homodinuclear Os complex becomes luminescent at room temperature, whereas the homodinuclear Ru complex becomes luminescent at 77 K, thus establishing their photoswitching behavior. The reduced heterodinuclear complex exhibits luminescence from the Os center, which is sensitized by the Ru center in the same molecule as evidenced by the excitation spectra. Thus, the intramolecular energy transfer can be switched on and off by the redox reaction of the bridging component.  相似文献   
75.
Two new ditopic ligands, 5,5"-azobis(2,2'-bipyridine) (5,5"-azo) and 5,5"-azoxybis(2,2'-bipyridine) (5,5"-azoxy), were prepared by the reduction of nitro precursors. Mononuclear and dinuclear Ru(II) complexes having one of these bridging ligands and 2,2'-bipyridine terminal ligands were also prepared, and their properties were compared with previously reported Ru(II) complexes having 4,4"-azobis(2,2'-bipyridine) (4,4"-azo). The X-ray crystal structure showed that 5,5"-azo adopts the trans conformation and a planar rodlike shape. The X-ray crystal structure of [(bpy)(2)Ru(5,5"-azo)Ru(bpy)(2)](PF(6))(4) (Ru(5,5"-azo)Ru) showed that the bridging ligand is in the trans conformation and nearly planar also in the complex and the metal-to-metal distance is 10.0 A. The azo or azoxy ligand in these complexes exhibits reduction processes at less negative potentials than the terminal bpy's due to the low-lying pi level. The electronic absorption spectra for the complexes having 5,5"-azo or 5,5"-azoxy exhibit an extended low-energy metal-to-ligand charge-transfer absorption. The ligands, 5,5"-azo and 5,5"-azoxy, and the mononuclear complex, [(bpy)(2)Ru(5,5"-azo)](2+), isomerize reversibly upon light irradiation. The low-energy MLCT state sensitizes the isomerization of the azo moiety in this complex. While [(bpy)(2)Ru(4,4"-azo)Ru(bpy)(2)](PF(6))(4) exhibits light switch properties, namely, significant electrochromism and a large luminescence enhancement, upon reduction, Ru(5,5"-azo)Ru does not show these properties. The radical anion formation upon reduction of these complexes has been confirmed by ESR spectroscopy.  相似文献   
76.
The Raman shift and crystallite modulus were measured under the application of tensile force for a giant single crystal and a series of uniaxially oriented semicrystalline samples of poly(trans‐1,4‐diethyl muconate) (polyEMU). The apparent Raman shift factor αapp or a vibrational frequency shift per 1 GPa tensile stress was higher for the semicrystalline samples with lower crystallinity or lower bulk modulus. The apparent crystallite modulus E or Young's modulus along the chain axis in the crystalline region was not constant but varied remarkably between the giant single crystal and semicrystalline samples. A systematic change in αapp and E among the polyEMU samples with different preparation history could be interpreted quantitatively on the basis of a mechanical series parallel model consisting of crystalline and amorphous phases. The origin of different E and αapp was speculated to be a stress concentration on the taut‐tie chain contained as a parallel crystalline component in the mechanical model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 444–453, 2003  相似文献   
77.
New heteroaryl-substituted o-divinylbenzenes, 2,2'-(1,2-phenylenedivinylene)difuran (9), 2,2'-(1,2-phenylenedivinylene)bisbenzo[b]furan (10), and 2,2'-(1,2-phenylenedivinylene)bisnaphtho[2,1-b]furan (11), were prepared and irradiated at various concentrations; intramolecular photocycloaddition and intermolecular [2+2] twofold photoaddition reactions took place to give bicyclo[3.2.1]octadiene derivatives 12-14 and cyclophane derivatives 15-17, respectively. Compound 11 was the most selective of these o-divinylbenzenes, which, owing to pi-pi intra- or intermolecular complexation, gave only the exo-bicyclo[3.2.1]octadiene derivative 14 at low concentrations, and only the cyclophane derivative 17 at high concentrations.  相似文献   
78.
79.
Inelastic X-ray scattering experiments have been performed on methanol as a function of density from ambient to the supercritical state. Positive dispersion of the sound velocity, as compared to the hydrodynamic values, is 50% in the ambient condition and decreases to zero at 0.50 g cm−3 over the momentum transfer Q = 1–10 nm−1 with lowering density; however, it increases again with a further decrease in density down to 0.20 g cm−3in the supercritical state only in the Q-range above 5 nm−1. These results have been interpreted as the formation of small oligomers in the low-density supercritical methanol.  相似文献   
80.
We show a new approach to manipulating the through‐space spin–spin interaction by utilizing the confined cavity of a self‐assembled M6L4 coordination cage. The coordination cage readily encapsulates stable organic radicals in solution, which brings the spin centers of the radicals closer to each other. In sharp contrast to the fact that the radical in solution in the absence of the cage is in a doublet state, in the presence of the cage through‐space spin–spin interaction is induced through cage‐encapsulation effects in solution as well as in the solid state, resulting in the triplet state of the complex. These results were confirmed by ESR spectroscopy and X‐ray crystallography. The quantity of triplet species generated by encapsulation in the cage increases with increasing affinity of the radicals to the cage. We estimated the affinity between several types of guests and the cage in solution by cyclic voltammetry. We also demonstrate that the through‐space interaction of organic radicals within the self‐assembled coordination cage can be controlled by external stimuli such as heat or pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号