首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   9篇
化学   342篇
晶体学   5篇
力学   7篇
数学   40篇
物理学   64篇
  2023年   5篇
  2022年   4篇
  2021年   7篇
  2020年   15篇
  2019年   14篇
  2018年   9篇
  2017年   1篇
  2016年   11篇
  2015年   16篇
  2014年   11篇
  2013年   41篇
  2012年   29篇
  2011年   39篇
  2010年   19篇
  2009年   20篇
  2008年   34篇
  2007年   37篇
  2006年   30篇
  2005年   21篇
  2004年   15篇
  2003年   21篇
  2002年   12篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1980年   3篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
61.
    
To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol−1). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.  相似文献   
62.
    
Porphyrins are important macrocycles with applications in several areas including therapy, catalysis, and sensing. Strong nonlinear optical (NLO) responses are the key to fully exploiting the potential of these biocompatible molecules. We herein report that certain metal-alkynyl donor/nitro acceptor-functionalized porphyrins are attractive candidates for NLO applications. We show that specific examples exhibit record quadratic optical nonlinearity, exceptional two-photon absorption, and outstanding three-photon absorption, and we report the first porphyrins that exhibit four-photon absorption. The two-, three-, and four-photon absorption maxima are found at the corresponding multiples of linear absorption bands that time-dependent density functional theory assigns as admixtures of porphyrin-localized π*←π and donor-porphyrin to porphyrin-acceptor charge-transfer transitions.  相似文献   
63.
The paintings by Édouard Manet in The Courtauld Gallery Déjeuner sur l'herbe (1863–68), Marguerite de Conflans en Toilette de Bal (1870–1880), Banks of the Seine at Argenteuil (1874), and A Bar at the Folies–Bergère (1882) were investigated for the first time using a range of non-invasive in situ analyses. The aims of the study were to investigate the painting techniques and materials used for this group of works and to critically evaluate the technical evidence derived from the integrated use of imaging techniques and portable spectroscopic methods in this context. The paintings were investigated by means of macro X-ray fluorescence (MA-XRF), reflection spectral imaging, portable UV–Vis–NIR spectroscopy, portable Raman spectroscopy, and reflection FTIR. MA-XRF and reflection spectral imaging allowed visualising elements in the compositions that were not visible using traditional methods of technical study. For example, MA-XRF analysis of Déjeuner sur l'herbe revealed elements of the development of the composition that provided new evidence to consider its relationship to other versions of the composition. The study also highlighted questions about the interpretation of elemental distribution maps and spectral images that did not correspond to the reworking visible in X-radiographs. For example, in A Bar at the Folies–Bergère Manet made numerous changes during painting, which were not clearly visualised with any of the techniques used. The research has wider implications for the study of Impressionist paintings, as the results will support technical studies of works by other artists of the period who used similar materials and painting methods.  相似文献   
64.
Nonlinear Elastic Wave Spectroscopy (NEWS) relies on the activation of defects by wave energy that propagates through the medium. In general, the response of activated defects will not scale linearly with the excitation amplitude, and the resulting nonlinear signatures can be identified and used for quality inspection. The efficiency of NEWS based inspection methods is therefore intrinsically linked to the locally deposited activation energy at the defect zone and the ability to generate nonlinear signatures that exceed the noise level of acquisition. Time Reversal techniques allow focusing of high levels of energy in small areas, and are consequently very useful for the local activation of defected zones. In this report, numerical simulations are reported showing the potential of a combination consisting of dual energy reciprocal Time Reversal and nonlinearity filtering using the Scaling Subtraction Method. The method is applied to the detection of planar near-surface defects parallel to the surface in a 2D domain. The results are evaluated for sweep excitation at different frequency ranges; for point-like receiver as well as extended transducers, and for in-plane as well as out-of-plane focusing. The observable nonlinear response at the surface is linked to an effective nonlinearity within the medium based on the defect geometry and the distribution of the local stresses.  相似文献   
65.
In this study, several process parameters that may contribute to the efficiency of ultrasound disinfection are examined on a pilot scale water disinfection system that mimics realistic circumstances as encountered in an industrial environment. The main parameters of sonication are: (i) power; (ii) duration of treatment; (iii) volume of the treated sample. The specific energy (Es) is an indicator of the intensity of the ultrasound treatment because it incorporates the transferred power, the duration of sonication and the treated volume. In this study, the importance of this parameter for the disinfection efficiency was assessed through changes in volume of treated water, water flow rate and electrical power of the ultrasonic reactor. In addition, the influences of the initial bacterial concentration on the disinfection efficiency were examined. The disinfection efficiency of the ultrasonic technique was scored on a homogenous and on a mixed bacterial culture suspended in water with two different types of ultrasonic reactors (Telsonic and Bandelin). This study demonstrates that specific energy, treatment time of water with ultrasound and number of passages through the ultrasonic reactor are crucial influential parameters of ultrasonic disinfection of contaminated water in a pilot scale water disinfection system. The promising results obtained in this study on a pilot scale water disinfection system indicate the possible application of ultrasound technology to reduce bacterial contamination in recirculating process water to an acceptable low level. However, the energy demand of the ultrasound equipment is rather high and therefore it may be advantageous to apply ultrasound in combination with another treatment.  相似文献   
66.
67.
The use of electrospray ionization mass spectrometry (ESI-MS) for studying non-covalent interactions between macromolecules and ligands is well established. ESI-MS can be a useful tool for the determination of dissociation constants between molecules in the gas phase. We validate this method by studying the binding of the catalytic domain of cellobiohydrolase I (CBH I) from Trichoderma reesei to the disaccharide inhibitor cellobiose. The method was further applied to study two newly synthesized cellobiose derivatives (m-iodobenzyl 2-deoxy-2-azido-beta-cellobioside and p-benzyloxybenzyl beta-cellobioside). In a titration experiment, peak areas of different charge states of the free enzyme and the complex were summed in order to determine the dissociation constant. For cellobiose and m-iodobenzyl 2-deoxy-2-azido-beta-cellobioside, the calculated values are in good agreement with those reported from either displacement titration or equilibrium binding experiments in solution. Due to non-specific binding, the dissociation constant of p-benzyloxybenzyl beta-cellobioside does not correspond with the solution-based value. Our results indicate the need for careful interpretation of data sets when using nanoESI to study non-covalent interactions.  相似文献   
68.
N-Glycosylation of cellobiohydrolase I from the fungus Trichoderma reesei (strain Rut-C30) is studied using a combination of electrophoretic, chromatographic and mass spectrometric techniques. As four potential N-glycosylation sites and several uncharged and phosphorylated high-mannose glycans are present, a large number of glycoforms and phospho-isoforms can be expected. Isoelectric focusing both in gel and in capillary format was successfully applied for the separation of the phospho-isoforms. They were extracted in their intact form from the gel and subsequently analysed by nanospray-Q-TOF-MS, thereby making use of a powerful two-dimensional technique. Nano-LC/MS/MS on a Q-Trap MS further allowed the determination of the glycosylation sites. As a novel approach, an oxonium ion was used in precursor ion scanning for selective detection of glycopeptides containing phosphorylated high-mannose glycans.  相似文献   
69.
Iron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron μ-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal μ-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf.
Figure
Elemental distribution maps within intact tomato roots as determined by confocal micro X‐ray fluorescence  相似文献   
70.
Novel indolo[3,2-b]carbazole derivatives and a chromogenic-sensing 5,12-dihydroindolo[3,2-b]carbazole have been synthesized starting from tetra-tert-butylated 6,12-diaryl-5,11-dihydroindolo[3,2-b]carbazoles, which were prepared via an efficient tert-butylation of 6,12-diaryl-5,11-dihydroindolo[3,2-b]carbazoles.  相似文献   
[首页] « 上一页 [2] [3] [4] [5] [6] 7 [8] [9] [10] [11] [12] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号