首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3038篇
  免费   69篇
  国内免费   14篇
化学   2115篇
晶体学   27篇
力学   43篇
数学   198篇
物理学   738篇
  2022年   19篇
  2021年   25篇
  2020年   44篇
  2019年   31篇
  2018年   27篇
  2017年   30篇
  2016年   60篇
  2015年   43篇
  2014年   65篇
  2013年   132篇
  2012年   144篇
  2011年   165篇
  2010年   77篇
  2009年   88篇
  2008年   162篇
  2007年   170篇
  2006年   170篇
  2005年   154篇
  2004年   116篇
  2003年   110篇
  2002年   109篇
  2001年   80篇
  2000年   69篇
  1999年   59篇
  1998年   35篇
  1997年   31篇
  1996年   33篇
  1995年   33篇
  1994年   28篇
  1993年   35篇
  1992年   55篇
  1991年   52篇
  1990年   34篇
  1989年   36篇
  1988年   43篇
  1987年   37篇
  1986年   36篇
  1985年   57篇
  1984年   42篇
  1983年   35篇
  1982年   34篇
  1981年   26篇
  1980年   27篇
  1979年   32篇
  1978年   22篇
  1977年   24篇
  1976年   26篇
  1975年   19篇
  1974年   19篇
  1973年   22篇
排序方式: 共有3121条查询结果,搜索用时 15 毫秒
71.
Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content (EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media (P < 0.0001), and that EC and viable counts were strongly positively correlated (r = 0.986) over a range of 120 to approximately 5 × 108 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.  相似文献   
72.
The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirror's thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17 and 18 K. The detector sensitivity, which was limited by the mirror's thermal fluctuation at room temperature, was improved in the frequency range of 90 to 240 Hz by cooling the mirrors. The improved sensitivity reached a maximum of 2.2×10(-19) m/√Hz at 165 Hz.  相似文献   
73.
74.
75.
76.
77.
78.
79.
We previously showed that infrared thermography (IRT) could be used to quantify viable Escherichiacoli, a representative gram-negative bacterium, in liquid growth media. Here, we evaluated the ability of IRT to enumerate a viable representative gram-positive organism, Staphylococcusaureus. We found that the energy content (EC) of the media was strongly positively correlated (r = 0.999) to measured viable counts of S.aureus ranging from 85 colony-forming units (CFU)/ml to ∼4 × 108 CFU/ml. The EC of S.aureus was ∼2-fold higher than that of E.coli at comparable cell concentrations suggesting that IRT may be used to distinguish genera.  相似文献   
80.
Positronium is an ideal system for the research of the quantum electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of positronium, ΔHFS, gives a good test of the bound state calculations and probes new physics beyond the Standard Model. A new method of QED calculations has revealed the discrepancy by 15 ppm (3.9σ) of ΔHFS between the QED prediction and the experimental average. There would be possibility of new physics or common systematic uncertainties in the previous all experiments. We describe a new experiment to reduce possible systematic uncertainties and will provide an independent check of the discrepancy. We are now taking data and the current result of ΔHFS?=?203.395 1 ±0.002 4 (stat., 12 ppm) ±0.001 9 (sys., 9.5 ppm) GHz has been obtained so far. A measurement with a precision of O(ppm) is expected within a year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号