首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   3篇
化学   103篇
力学   4篇
数学   21篇
物理学   56篇
  2019年   2篇
  2017年   2篇
  2015年   5篇
  2013年   2篇
  2012年   12篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1996年   6篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   9篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   4篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1937年   2篇
  1934年   1篇
  1932年   3篇
  1931年   1篇
  1927年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
71.
Attenuated Total Reflectance (ATR) FTIR has been used to follow sol-gel synthesis kinetics for tetraethylorthosilicate (TEOS), ethanol, and water solutions yielding pure silicate materials. Aluminosilicates have also been made using TEOS:ethanol:water solutions doped with Al(III). Effective rate constants have been fitted to a kinetic model suggested by the literature for pure silicate materials. This model has been extended to include the effect of Al(III) on the rate constants. The effects of solution pH, temperature, and varying TEOS/Ethanol mole ratios have been investigated. Reliable effective rate constants for metal doped sol-gel solutions will lead to better control of the morphological and chemical properties of multi-component glass materials.  相似文献   
72.
The ?-X electronic absorption spectrum of propargyl peroxy radical has been recorded at room temperature by cavity ring-down spectroscopy. Electronic structure calculations predict two isomeric forms, acetylenic and allenic, with two stable conformers for each. The acetylenic trans conformer, with a band origin at 7631.8 ± 0.1 cm(-1), is definitively assigned on the basis of ab initio calculations and rotational simulations, and possible assignments for the acetylenic gauche and allenic trans forms are given. A fourth form, allenic cis, is not observed. Simulations based on calculated torsional potentials predict that the allenic trans form will have a long, poorly resolved progression in the OOCC torsional vibration, consistent with experimental observations.  相似文献   
73.
74.
We recently reported the convection and pattern formation of tracers caused by a catalytically generated electric field. The electric field arises due to the heterogeneous electrochemical reduction and oxidation of hydrogen peroxide (H2O2) on silver (Ag) and gold (Au), respectively.1 Here we describe an electrokinetic model, developed in conjunction with experiments, that explains the details of the convection and pattern formation phenomenon. The model also enables the measurement of reaction kinetic parameters that are otherwise difficult to obtain. This quantitative model serves as a platform for the modeling of other catalytic redox systems and systems with broken symmetries.  相似文献   
75.
The title compound, also known as β‐erythroadenosine, C9H11N5O3, (I), a derivative of β‐adenosine, (II), that lacks the C5′ exocyclic hydroxymethyl (–CH2OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is OT1E1 (C1′‐exo, east), with pseudorotational parameters P and τm of 114.4 and 42°, respectively. In contrast, the P and τm values are 170.1 and 46°, respectively, in (IB), consistent with a 2E2T3 (C2′‐endo, south) conformation. The N‐glycoside conformation is syn (+sc) in (IA) and anti (−ac) in (IB). The crystal structure, determined to a resolution of 2.0 Å, of a cocrystal of (I) bound to the enzyme 5′‐fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near‐ideal OE (east) conformation (P = 90° and τm = 42°) and the base in an anti (−ac) conformation.  相似文献   
76.
Mn-doped CuInSe2 compounds (CuIn1−xMnxSe2, x=0.0125–0.20 and Cu1−yIn1−yMn2ySe2, 2y=0.0125–0.60) were synthesized by high-temperature solid-state reactions. Single phase materials with chalcopyrite structure persist up to 0.10 and 0.20 doping for CuIn1−xMnxSe2 and Cu1−yIn1−yMn2ySe2, respectively. The chalcopyrite and sphalerite phases co-exist in the Cu1−yIn1−yMn2ySe2 system for 2y=0.25–0.50. Attempts to introduce greater manganese content, x=0.15–0.20 for CuIn1−xMnxSe2 and 2y=0.60 for Cu1−yIn1−yMn2ySe2, result in partial phase segregation. For the single-phase samples, the lattice parameters of both systems increase linearly with manganese concentration and thus follow Vegard's law. The temperature of the chalcopyrite–sphalerite phase transition is decreased by manganese substitution for all single-phase samples. The bandgap of the materials remains around 0.9 eV. Additionally, the Mn-doped CuInSe2 compounds display paramagnetic behavior, whereas pure CuInSe2 is diamagnetic at 5–300 K. All the CuIn1−xMnxSe2 and Cu1−yIn1−yMn2ySe2 compounds with chalcopyrite structure show antiferromagnetic coupling and measured effective magnetic moments up to 5.8 μB/Mn.  相似文献   
77.
Poly(ethylene oxide) (PEO), soluble in both aqueous and organic solvents, is one of the most intriguing polymers. PEO solution properties have been extensively studied for decades; however, many of the studies have focused on specific properties, such as clustering, of PEO in aqueous solutions, and the behavior of PEO in organic solvents has not been adequately explored. The results presented here demonstrate that PEO crystallizes into a lamellar structure in ethyl alcohol after the mixture is quenched to room temperature from a temperature above the crystal melting point. Above the melting temperature, PEO completely dissolves in ethyl alcohol, and the mixture exhibits regular polymer solution thermodynamic behavior with an upper critical solution temperature (UCST) phase diagram. Remarkably, the UCST phase boundary is significantly below the melting temperature, and this indicates that the system undergoes a crystallization process before the phase separation can occur upon cooling and, therefore, possesses an unusual phase transition. The phase transition from the crystalline state to the miscible solution state is reversible upon heating or cooling and can be induced by the addition of a small amount of water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 557–564, 2006  相似文献   
78.
Si(1 0 0) surfaces were prepared by wet-chemical etching followed by 0.3–1.5 keV Ar ion sputtering, either at elevated or room temperature (RT). After a brief anneal under ultrahigh vacuum (UHV) conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(1 0 0) surface. However, subsequent 300 eV Ar ion sputtering at room temperature followed by a 700 °C anneal yields atomically clean and flat Si(1 0 0) surfaces suitable for nanoscale device fabrication.  相似文献   
79.
The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.  相似文献   
80.
A great deal of attention has been paid to the use of magnetite nanoparticles as heating elements in the research of magnetic fluid hyperthermia. However, these particles have a relatively low magnetization and as a result, have low heating efficiency as well as difficulties in detection applications. To maximize heating efficiency we propose and show the use of high-moment Fe(Co)-Au core-shell nanoparticles. Using a physical vapor nanoparticle-deposition technique the high-moment nanoparticles were synthesized. The water-soluble particles were placed in an AC magnetic field of variable magnetic field frequencies. The temperature rise was measured and compared to theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号