首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   9篇
化学   61篇
数学   1篇
物理学   7篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1935年   2篇
  1931年   2篇
  1930年   1篇
  1928年   3篇
  1927年   2篇
  1925年   3篇
  1922年   2篇
  1909年   1篇
  1901年   1篇
排序方式: 共有69条查询结果,搜索用时 0 毫秒
31.
32.
33.
34.
The development of functionalized polyolefins for use as stimuli-responsive commodity polymers has recently received much attention. In this work, a microporous polypropylene (PP) scaffold is used to align and fortify a smectic liquid crystalline network (LCN) which can switch its gas permeability upon pH changes. The LCN is a photopolymerized liquid crystalline mixture of a dimerized benzoic acid derivative monoacrylate and a diacrylate crosslinker. In the hydrogen-bonded state, the composite membrane shows a high-molecular order and a low permeability for He, N2, and CO2 gases. By pH switching from the hydrogen-bonded state to the salt form, the molecular order is reduced, and the gas permeability is increased by one order of magnitude. This increase is mainly attributed to a loss in order of the system, increasing the free volume, resulting in an increased diffusibility. By exposing the composite film to basic or acidic environments, reversible switching between low and high gas permeability states is observed, respectively. The physical constraints imposed by the PP scaffold strengthens the membrane while the reversible switching inside the liquid crystalline polymer is maintained. This switching of gas permeation properties is not possible with the fragile freestanding LCN films alone.  相似文献   
35.
36.
37.
The crystal structures of Fe(NCNH)2 and Co(NCNH)2, isotypical with Ni(NCNH)2, have been refined by means of combined X‐ray and neutron powder diffraction data (SPODI, FRM II). The lattice parameters are a = 6.6655(7), b = 8.7923(8), c = 3.3304(3) Å for Fe(NCNH)2 and a = 6.5696(2), b = 8.8058(2), c = 3.2622(1) Å for Co(NCNH)2 in the orthorhombic system Pnmm (no. 58). The positions of the hydrogen atoms have been clearly resolved.  相似文献   
38.
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.  相似文献   
39.
After a prolonged effort over many years, the route for the formation of a direct carbon?carbon (C?C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C?C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers.  相似文献   
40.
Methanol‐to‐olefin (MTO) catalysis is a very active field of research because there is a wide variety of sometimes conflicting mechanistic proposals. An example is the ongoing discussion on the initial C?C bond formation from methanol during the induction period of the MTO process. By employing a combination of solid‐state NMR spectroscopy with UV/Vis diffuse reflectance spectroscopy and mass spectrometry on an active H‐SAPO‐34 catalyst, we provide spectroscopic evidence for the formation of surface acetate and methyl acetate, as well as dimethoxymethane during the MTO process. As a consequence, new insights in the formation of the first C?C bond are provided, suggesting a direct mechanism may be operative, at least in the early stages of the MTO reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号