首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   15篇
  国内免费   5篇
化学   350篇
晶体学   7篇
力学   6篇
数学   9篇
物理学   93篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   12篇
  2013年   16篇
  2012年   21篇
  2011年   30篇
  2010年   13篇
  2009年   20篇
  2008年   30篇
  2007年   20篇
  2006年   29篇
  2005年   15篇
  2004年   21篇
  2003年   18篇
  2002年   16篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   14篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   5篇
  1972年   2篇
  1970年   1篇
排序方式: 共有465条查询结果,搜索用时 0 毫秒
71.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   
72.
Extensive studies were carried out to apply composite materials composed of polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) to develop cathode materials which exhibit high energy densities. Previous results have established that composites of PAn and DMcT which are coated onto copper substrates exhibit greatly enhanced charge and discharge performance. It is shown that composite materials composed of DMcT, PAn, and Cu ion have the ability to be reversibly charged and discharged at ca. 260 A h per kg-cathode (ca. 830 W h per kg-cathode) for more than 80 cycles. These two results are explored in general in this contribution via investigation of the electron transfer reactions between the components using UV/Vis and investigation of the copper substrate/DMcT chemistry using electrochemical quartz crystal microbalance and phase modulated interferometric microscopy.  相似文献   
73.
74.
We performed the elastic neutron scattering experiments on the mixed compounds CeRh1-xCoxIn5, and found that doping Co into CeRhIn5 dramatically changes the antiferromagnetic (AF) structure. The incommensurate AF state with the propagation vector of observed in pure CeRhIn5 is suppressed with increasing x, and new AF states with an incommensurate and a commensurate modulations simultaneously develop near the AF quantum critical point: xc0.8. These results suggest that the AF correlations with the qc and q1 modulations enhanced in the intermediate Co concentrations may play a crucial role in the evolution of the superconductivity observed above x0.4.  相似文献   
75.
Photodynamic therapy mediated by 5-aminolevulinic acid (ALA-PDT) has been developed as a therapeutic modality for refractory superficial bladder cancers. Here, in experiments using urothelial cancer cell lines, we investigated the effects of siRNA modulating heme-synthetic and degradation pathways for ALA-PDT. Targeted knockdown of ferrochelatase (FECH) suppressed heme synthesis and significantly increased intracellular protoporphyrin IX (PpIX) accumulation, leading to enhanced phototoxicity in four of five cell lines. Heme oxygenase-1 (HO-1) is recognized as important for cytoprotection against oxidative stress such as PDT. Targeted knockdown of HO-1 leads to decreased intracellular PpIX accumulation, resulting in a failure to enhance ALA-PDT effect in four cell lines. Knockdown of HO-1 caused marked growth inhibition in UM-UC-2 overexpressing HO-1, whereas no inhibitory effect was observed in UM-UC-3 lacking HO-1 expression. Moreover, HO-1 protein levels and (GT) n repeat polymorphism of the HO-1 gene promoter region were examined with the implication that the constitutive expressions of HO-1 protein were associated with a shorter (GT) n repeat. Our results suggested that (1) FECH siRNA improved the phototoxicity of ALA-PDT, (2) overexpression of HO-1 was associated with shorter (GT) n repeat of the promoter region, and (3) siRNA-mediated knockdown of HO-1 could suppress the growth of bladder cancer cells overexpressing HO-1.  相似文献   
76.
A two-step binding assay for globotriaosylceramide (Gb3) content was developed by histidine-tagging strategy, which is a well-established method for the purification of recombinant proteins. The complete binding of the recombinant His-tagged Shiga toxin 1B subunit (1B-His) (1 microg/ml) to the standard Gb3 adsorbed on a multi-well H type plate was observed within 30 min at 37 degrees C; and its binding could be visualized by the following applications of HisProbe-HRP (8 microg/ml) and tetramethylbenzidine (TMB) peroxidase substrate. The 1B-His binding assay was linear over the range of 1 to 100 ng of Gb3 per well. The binding of 1B-His was specific to Gb3 separated from HeLa cells, and no major cross-reactivity of other glycolipids in Folch's lower fractions extracted from HeLa cells was detected. The glycolipids in Folch's lower fractions from HeLa cells, human fibroblasts and mouse heart were suitable for this assay, but the further purification was needed for glycolipids from human plasma, thus sample preparation is critical factor for the reliable determination of Gb3 content. The 1B-His binding to Gb3 was inhibited by the addition of galactose, but not mannose. This 1B-His binding assay will be useful not only for the determination of Gb3 content, but also for screening for the compounds which inhibit the toxin-binding to Gb3. The strategy of our present method may be applicable for other binding assay, such as Cholera toxin B-subunit for ganglioside GM1.  相似文献   
77.
A randomly mixed monodispersed nanosized Pt-Ru catalyst, an ultimate catalyst for CO oxidation reaction, was prepared by the rapid quenching method. The mechanism of CO oxidation reaction on the Pt-Ru anode catalyst was elucidated by investigating the relation between the rate of CO oxidation reaction and the current density. The rate of CO oxidation reaction increased with an increase in unoccupied sites kinetically formed by hydrogen oxidation reaction, and the rate was independent of anode potential. Results of extended X-ray absorption fine structure spectroscopy showed the combination of N(Pt-Ru)/(N(Pt-Ru) + N(Pt-Pt)) ? M(Ru)/(M(Pt) + M(Ru)) and N(Ru-Pt)/(N(Ru-Pt) + N(Ru-Ru)) ? M(Pt)/(M(Ru) + M(Pt)), where N(Pt-Ru)(N(Ru-Pt)), N(Pt-Pt)(N(Ru-Ru)), M(Pt), and M(Ru) are the coordination numbers from Pt(Ru) to Ru(Pt) and Pt (Ru) to Pt (Ru) and the molar ratios of Pt and Ru, respectively. This indicates that Pt and Ru were mixed with a completely random distribution. A high-entropy state of dispersion of Pt and Ru could be maintained by rapid quenching from a high temperature. It is concluded that a nonelectrochemical shift reaction on a randomly mixed Pt-Ru catalyst is important to enhance the efficiency of residential fuel cell systems under operation conditions.  相似文献   
78.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   
79.
Fx3 is an artificial ribozyme with the ability to aminoacylate various tRNAs with phenylalanine and its nonnatural derivatives. Herein we report a simple strategy to build tRNA specificity into the generic Fx3, by appending to its 3'-end a tRNA-specific sequence (TSS), which is complementary to the acceptor stem of the cognate tRNA. This new designer ribozyme, referred to as Fx10, is able to recognize its cognate tRNA via a 10-base-pair interaction that is formed after the invasion of the tRNA acceptor stem by the TSS. We have demonstrated that Fx10 can aminoacylate its cognate tRNA with a high degree of specificity and also discriminate against the noncognate tRNAs. Because the tRNA specificity can be easily programmed into Fx10, it is a custom-made catalyst to generate nonnatural aminoacyl-tRNAs.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号