首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   88篇
  国内免费   8篇
化学   1563篇
晶体学   13篇
力学   30篇
数学   85篇
物理学   244篇
  2023年   21篇
  2022年   17篇
  2021年   28篇
  2020年   50篇
  2019年   41篇
  2018年   33篇
  2017年   16篇
  2016年   37篇
  2015年   47篇
  2014年   49篇
  2013年   73篇
  2012年   110篇
  2011年   141篇
  2010年   62篇
  2009年   69篇
  2008年   119篇
  2007年   112篇
  2006年   121篇
  2005年   108篇
  2004年   89篇
  2003年   67篇
  2002年   85篇
  2001年   49篇
  2000年   38篇
  1999年   23篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   13篇
  1993年   14篇
  1992年   23篇
  1991年   17篇
  1990年   19篇
  1989年   15篇
  1988年   15篇
  1987年   14篇
  1986年   9篇
  1985年   15篇
  1984年   8篇
  1982年   9篇
  1981年   12篇
  1980年   7篇
  1979年   15篇
  1977年   9篇
  1976年   15篇
  1975年   6篇
  1974年   15篇
  1973年   9篇
  1972年   6篇
  1967年   7篇
排序方式: 共有1935条查询结果,搜索用时 93 毫秒
91.
92.
Visible light‐mediated radical alkenylation of benzylsulfonium salts was achieved by means of fac‐Ir(ppy)3 as a photocatalyst, giving allylbenzenes as products. A variety of functional groups, such as halogen, ester, and cyano, were well tolerated in this transformation. Starting benzylsulfonium salts could be readily prepared from benzyl alcohols by an acid‐mediated substitution, increasing the synthetic utility of this transformation.  相似文献   
93.
Abstract

Although cyanide compounds are not incorporated in photographic processing solutions, false detection of cyanide ion is often encountered during the determination of total cyanide by various standardized methods such as ISO, ANSI and JIS. Various organic compounds and nitrogen compounds in the processing solutions were examined because of this false detection. The results suggest that hydrogen cyanide is formed by a reaction between these compounds during the distillation process for the separation of total cyanide, even though ISO, ANSI and JIS were used. The results support the following three mechanisms of cyanide formation involved in the process: (1) Hydroxylammonium salts reacts with another ingredient, formaldehyde, to form formaldoxime, which then decomposes to HCN. (2) Hydroxylammonium is oxidized by air to form nitrite ion, which subsequently reacts with organic compounds such as aminocarboxylic acids and aromatic amines (the colour-developing agent) to form HCN. (3) Potassium permanganate oxidizes aromatic amines to form HCN.  相似文献   
94.
High-power 2.8 W blue-violet InGaN LD was fabricated, applying AlN facet coating technology. The AlN was found to be crystallized on the facets and very stable even after 2200 h cw operation. Luminous flux over 380 lm is obtained with a phosphor-converted LD excitation white light source using just a single laser chip at 1A operating current.  相似文献   
95.
A new lasso peptide named subterisin was isolated from the culture broth of Sphingomonas subterranea NBRC 16086T. The molecular formula of subterisin was established as C78H121O22N21 based on accurate mass analysis. The chemical structure of subterisin was determined by 2D NMR experiments. The presence of macrolactam ring of Gly1–Glu8 was indicated by NOESY experiment and MS/MS analysis. The three-dimensional structure of subterisin in solution was established by calculation based on NMR data. The proposed biosynthetic gene cluster of subterisin was found on the genome of S. subterranea.  相似文献   
96.
97.
Oxygen-sensitive and near-infrared (NIR) luminescent YbIII coordination polymers incorporating ligands based on pyrene derivatives were synthesized: YbIII–TBAPy and YbIII–TIAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoate)pyrene; TIAPy: 1,3,6,8-tetrakis(3,5-isophthalic acid)pyrene). The coordination structures of these materials have been characterized by means of electrospray ionization mass spectrometry, X-ray diffraction analysis, and thermogravimetric analysis. Moreover, the porous structure of YbIII–TIAPy has been evaluated by measuring its N2 adsorption isotherm. The NIR luminescence properties of YbIII–TBAPy and YbIII–TIAPy have been examined by acquiring emission spectra and determining emission lifetimes under air or argon and in vacuo. YbIII–TIAPy exhibited high thermal stability (with a decomposition temperature of 400 °C), intense luminescence (with an emission quantum yield under argon of 6.6 %), and effective oxygen-sensing characteristics. These results suggest that NIR luminescent YbIII coordination polymers prepared using pyrene derivatives could have applications in novel thermo-stable oxygen sensors.  相似文献   
98.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   
99.
Two salts of the aromatic hydrocarbon decacyclene, {cryptand[2.2.2](Cs+)} (decacyclene.?) ( 1 ) and {Bu3MeP+}(decacyclene.?) ( 2 ), were obtained. In both salts, decacyclene.? radical anions formed channels occupied by cations. However, corrugated hexagonal decacyclene.? layers could be outlined in the crystal structure of 1 with several side‐by‐side C???C approaches. The decacyclene.? radical anions showed strong distortion in both salts, deviating from the C3 symmetry owing to the repulsion of closely arranged hydrogen atoms and the Jahn‐Teller effect. Radical anions showed intense unusually low energy absorption in the IR‐range, with maxima at 4800 and 6000 cm?1. According to the carculations, these bands can originate from the SOMO‐LUMO+1 and SOMO‐LUMO+2 transitions, respectively. Radical anions exhibited a S=1/2 spin state, with an effective magnetic moment of 1.72 μB at 300 K. The decacyclene.? spin antiferromagnetically coupled with a Weiss temperature of ?11 K. Spin ordering was not observed down to 1.9 K owing to spin frustration in the hexagonal decacyclene.? layers.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号