首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   17篇
  国内免费   4篇
化学   519篇
晶体学   2篇
力学   20篇
数学   58篇
物理学   192篇
  2022年   6篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   30篇
  2012年   23篇
  2011年   60篇
  2010年   23篇
  2009年   12篇
  2008年   40篇
  2007年   49篇
  2006年   50篇
  2005年   53篇
  2004年   42篇
  2003年   33篇
  2002年   23篇
  2001年   18篇
  2000年   14篇
  1999年   6篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   13篇
  1991年   9篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   6篇
  1977年   11篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
  1972年   5篇
  1969年   4篇
  1939年   4篇
排序方式: 共有791条查询结果,搜索用时 31 毫秒
91.
We present a study of Fo?rster resonance energy transfer (FRET) between two emissive conjugated polyelectrolytes (CPEs) in layer-by-layer (LbL) self-assembled films as a means of examining their organization and architecture. The two CPEs are a carboxylic acid functionalized polyfluorene (PFl-CO(2)) and thienylene linked poly(phenylene ethynylene) (PPE-Th-CO(2)). The PFl-CO(2) presents a maximum emission at 418 nm, while the PPE-Th-CO(2) has an absorption λ(max) centered at 431 nm, in sufficient proximity for effective FRET. Several LbL films have been constructed using varied concentrations of the deposition solutions and identity of the buffer layers separating the two emissive layers, using a system of either weak polyelectrolytes, poly(allylamine hydrochloride) (PAH)/poly(sodium methacrylate) (PMA), or strong polyelectrolytes, poly(diallylammonium chloride) (PDDA)/poly(styrene sulfonate) sodium (PSS). The efficiency of FRET has been monitored using fluorescence spectroscopy. Initially, the fluorescence of the PFl-CO(2) (E(g) ~ 3.0 eV), which emits at 420 nm, is quenched by the lower band gap PPE-Th-CO(2) (E(g) ~ 2.5 eV). For films using the PAH/PMA system as buffer bilayers and deposited from 1 mM solutions, the PFl-CO(2) fluorescence is progressively recovered as the number of intervening buffer bilayers is increased. Ellipsometry measurements indicate that energy transfer between the two emissive layers is efficient to a distance of ca. 7 nm.  相似文献   
92.
Cationic poly(phenylene ethynylene)- (PPE-) based conjugated polyelectrolytes (CPEs) with six different chain lengths ranging in degree of polymerization from ~7 to ~49 were synthesized from organic-soluble precursor polymers. The molecular weight of the precursor polymers was controlled by the amount of a monofunctional "end-capping" agent added to the polymerization reaction. Cationic CPEs were prepared by quaternization of amine groups to tetraalkylammonium groups. Their structure-property relationships were investigated by observing their photophysical properties and antibacterial activity. The polymers were found to exhibit a chain-length dependence in their photophysical properties. It has also been observed that the polymers exhibit effective antibacterial activity against both Gram-positive and Gram-negative bacteria under UV irradiation, whereas they show little antibacterial activity in the dark. An effect of chain length on the light-activated antibacterial activity was also found: The shortest polymer (n=7) exhibited the most effective antibacterial activity against both Gram-positive and Gram-negative bacteria.  相似文献   
93.
The electronic structure of a genuine paramagnetic des-oxo Mo(V) catalytic intermediate in the reaction of dimethyl sulfoxide reductase (DMSOR) with (CH(3))(3)NO has been probed by electron paramagnetic resonance (EPR), electronic absorption, and magnetic circular dichroism (MCD) spectroscopies. EPR spectroscopy reveals rhombic g- and A-tensors that indicate a low-symmetry geometry for this intermediate and a singly occupied molecular orbital that is dominantly metal centered. The excited-state spectroscopic data were interpreted in the context of electronic structure calculations, and this has resulted in a full assignment of the observed MCD and electronic absorption bands, a detailed understanding of the metal-ligand bonding scheme, and an evaluation of the Mo(V) coordination geometry and Mo(V)-S(dithiolene) covalency as it pertains to the stability of the intermediate and electron-transfer regeneration. Finally, the relationship between des-oxo Mo(V) and des-oxo Mo(IV) geometric and electronic structures is discussed relative to the reaction coordinate in members of the DMSOR enzyme family.  相似文献   
94.
A set of two donor-acceptor type conjugated polymers with carboxylic acid side groups have been synthesized and utilized as active materials for dye-sensitized solar cells (DSSCs). The polymers feature a π-conjugated backbone consisting of an electron-poor 2,1,3-benzothiadiazole (BTD, acceptor) unit, alternating with either a thiophene-fluorene-thiophene triad (2a) or a terthiophene (3a) segment as the donor. The donor-acceptor polymers absorb broadly throughout the visible region, with terthiophene-BTD polymer 3a exhibiting an absorption onset at approximately 625 nm corresponding to a ~1.9 eV bandgap. The polymers adsorb onto the surface of nanostructured TiO(2) due to interaction of the polar carboxylic acid units with the metal oxide surface. The resulting films absorb visible light strongly, and their spectra approximately mirror the polymers' solution absorption. Interestingly, a series of samples of 3a with different molecular weight (M(n)) adsorb to TiO(2) to an extent that varies inversely with M(n). DSSCs that utilize the donor-acceptor polymers as sensitizers were tested using an I(-)/I(3)(-) electrolyte. Importantly, for the set of polymer sensitizers 3a with varying M(n), the DSSC efficiency varies inversely with M(n), a result that reflects the difference in adsorption efficiency observed in the film absorption experiments. The best DSSC cell tested is based on a sample of 3a with M(n) ~ 4000, and it exhibits a ~65% peak IPCE with J(sc) ~12.6 mA cm(-2) under AM1.5 illumination and an overall power conversion efficiency of ~3%.  相似文献   
95.
Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X(2)Π and a(4)Σ(-) electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm(-1) in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH(f)(0K) = 161.7 ± 0.5 kcal/mol.  相似文献   
96.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   
97.
Ferric tetraamido macrocyclic ligand (TAML)-based catalysts [Fe{C(6)H(4)-1,2-(NCOCMe(2)NCO)(2)CR(2)}(OH(2))]PPh(4) [1; R = Me (a), Et (b)] are oxidized by m-chloroperoxybenzoic acid at -40 °C in acetonitrile containing trace water in two steps to form Fe(V)oxo complexes (2a,b). These uniquely authenticated Fe(V)(O) species comproportionate with the Fe(III) starting materials 1a,b to give μ-oxo-(Fe(IV))(2) dimers. The comproportionation of 1a-2a is faster and that of 1b-2b is slower than the oxidation by 2a,b of sulfides (p-XC(6)H(4)SMe) to sulfoxides, highlighting a remarkable steric control of the dynamics. Sulfide oxidation follows saturation kinetics in [p-XC(6)H(4)SMe] with electron-rich substrates (X = Me, H), but changes to linear kinetics with electron-poor substrates (X = Cl, CN) as the sulfide affinity for iron decreases. As the sulfide becomes less basic, the Fe(IV)/Fe(III) ratio at the end of reaction for 2b suggests a decreasing contribution of concerted oxygen-atom transfer (Fe(V) → Fe(III)) concomitant with increasing electron transfer oxidation (Fe(V) → Fe(IV)). Fe(V) is more reactive toward PhSMe than Fe(IV) by 4 orders of magnitude, a gap even larger than that known for peroxidase Compounds I and II. The findings reinforce prior work typecasting TAML activators as faithful peroxidase mimics.  相似文献   
98.
The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.  相似文献   
99.
The transformative potential of silicon photonics for chip-scale biosensing is limited primarily by the inability to selectively functionalize and exploit the extraordinary density of integrated optical devices on this platform. Silicon biosensors, such as the microring resonator, can be routinely fabricated to occupy a footprint of less than 50 × 50 μm; however, chemically addressing individual devices has proven to be a significant challenge due to their small size and alignment requirements. Herein, we describe a non-contact piezoelectric (inkjet) method for the rapid and efficient printing of bioactive proteins, glycoproteins and neoglycoconjugates onto a high-density silicon microring resonator biosensor array. This approach demonstrates the scalable fabrication of multiplexed silicon photonic biosensors for lab-on-a-chip applications, and is further applicable to the functionalization of any semiconductor-based biosensor chip.  相似文献   
100.
The technique of speckle visibility spectroscopy has been employed for the measurement of dynamics using coherent X‐ray scattering. It is shown that the X‐ray contrast within a single exposure can be related to the relaxation time of the intermediate scattering function, and this methodology is applied to the diffusion of 72 nm‐radius latex spheres in glycerol. Data were collected with exposure times as short as 2 ms by employing a resonant shutter. The weak scattering present for short exposures necessitated an analysis formalism based on the spatial correlation function of individual photon charge droplets on an area detector, rather than the usual methods employed for intensity correlations. It is demonstrated that this method gives good agreement between theory and experiment and thus holds promise for extending area‐detector‐based coherent scattering methods to the study of faster dynamics than previously obtainable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号