首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
化学   14篇
力学   1篇
数学   3篇
物理学   49篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2004年   6篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
41.
A frequency tunable source of squeezed light has been developed which is suitable for a variety of spectroscopic applications. In initial experiments continuous tunability over a range of 2 GHz has been achieved with a directly observed nonclassical noise reduction of 6 dB relative to the vacuum-state limit in a balanced homodyne detector. A process of light-induced absorption in the nonlinear crystal has been identified as the principal loss mechanism which prevents the observation of yet larger degrees of squeezing. Although our source is potentially broadly tunable over the range of wavelengths from 840 to 970 nm, the current research centers on the performance at 852 nm for spectroscopy of the D 2 line of atomic cesium. For frequency-modulated (FM) saturation spectroscopy in a vapor cell, an improvement of 3.1 dB in sensitivity relative to the usual quantum limit is demonstrated for the detection of Doppler-free resonances. When corrected for the thermal noise of the detector, the enhancement in signal-to-noise ratio brought by the squeezed field is 3.8 dB relative to the shot-noise limit set by the vacuum fluctuations of the probe field.  相似文献   
42.
A velocity calibrator based on a laser driven Michelson interferometer was designed for a73Ge Mössbauer spectrometer in the range of 100 to 500 μm/sec. The conventional method of counting the interference fringes cannot be used in this case because the displacement only spans about 3 to 15 μm and only a few fringes can be observed during one velocity sweep. The velocity calibration obtained this way was compared with the calibration obtained from57Fe measurement, and excellent agreement was found between the two methods.  相似文献   
43.
Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy variant Planck's over 2 h omega a/2kB = 13 microK is occupied with probability P0 approximately 0.95.  相似文献   
44.
45.
The transmission spectrum for one atom strongly coupled to the field of a high finesse optical resonator is observed to exhibit a clearly resolved vacuum Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over 10(3)-10(5) atoms.  相似文献   
46.
Single cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap, with observed lifetimes of 2-3 s. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting approximately 1 s. The loss of successive atoms from the trap N>/=3-->2-->1-->0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the trap potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.  相似文献   
47.
Scalable photonic quantum computation through cavity-assisted interactions   总被引:1,自引:0,他引:1  
We propose a scheme for scalable photonic quantum computation based on cavity-assisted interaction between single-photon pulses. The prototypical quantum controlled phase-flip gate between the single-photon pulses is achieved by successively reflecting them from an optical cavity with a single-trapped atom. Our proposed protocol is shown to be robust to practical noise and experimental imperfections in current cavity-QED setups.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号