首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   1篇
化学   26篇
晶体学   1篇
  2022年   6篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
Research on Chemical Intermediates - ZnO nanorods were hydrothermally grown on Zn foil in an alkaline solution and the immobilized nanorods were subsequently hybridized with reduced graphene oxide...  相似文献   
12.
The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination.  相似文献   
13.
Qi  Kezhen  Zada  Amir  Yang  Yang  Chen  Qingyang  Khataee  Alireza 《Research on Chemical Intermediates》2020,46(12):5281-5295
Research on Chemical Intermediates - The release of a large number of antibiotics to the environment has created a shade of sorrow in the scientific community. Herein, two-dimensional (2D)–2D...  相似文献   
14.
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等...  相似文献   
15.
16.
In this research we report synthesis of the heterostructure Mg‐Al‐Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH)2/Mg‐Al‐layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X‐ray diffraction (XRD), FT‐IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X‐ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X‐ray diffraction spectra. The calcined samples at 500, 600 and 700 °C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 °C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO.  相似文献   
17.
Research on Chemical Intermediates - In this study, a novel magnetically recoverable Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2 nano-particle was synthesized using a simple chemical coprecipitation approach....  相似文献   
18.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   
19.
The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination.  相似文献   
20.
Optimization and modeling of Pb(II) removal using polyacrylic acid stabilized zero-valent iron nanoparticles (PAA-ZVINs) from aqueous solution was performed. Central composite design (CCD) as the most applicable method in response surface methodology (RSM) was employed for optimization of Pb(II) removal. ZVINs were synthesized using the borohydride reduction method in the presence of PAA as a stabilizer and characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The independent variables for CCD optimization of Pb(II) removal were initial solution pH, ZVINs concentration (g/L), and initial concentration of Pb(II) (mg/L). Results showed a significant correlation between predicted values obtained from second-order polynomial model and experimental values (R 2 = 93.19 and adj-R 2 = 87.07). Maximum removal of Pb(II) (90.09 %) was observed at the optimal conditions of ZVINs concentration of 3 g/L, initial Pb(II) concentration of 10 mg/L, and initial solution pH of 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号