首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4406篇
  免费   156篇
  国内免费   24篇
化学   3005篇
晶体学   40篇
力学   161篇
数学   409篇
物理学   971篇
  2024年   20篇
  2023年   37篇
  2022年   279篇
  2021年   218篇
  2020年   155篇
  2019年   144篇
  2018年   175篇
  2017年   128篇
  2016年   177篇
  2015年   167篇
  2014年   168篇
  2013年   313篇
  2012年   265篇
  2011年   298篇
  2010年   170篇
  2009年   146篇
  2008年   155篇
  2007年   174篇
  2006年   134篇
  2005年   137篇
  2004年   87篇
  2003年   78篇
  2002年   70篇
  2001年   73篇
  2000年   53篇
  1999年   58篇
  1998年   27篇
  1997年   27篇
  1996年   44篇
  1995年   41篇
  1994年   27篇
  1993年   32篇
  1992年   33篇
  1991年   40篇
  1990年   20篇
  1989年   20篇
  1988年   28篇
  1987年   26篇
  1986年   26篇
  1985年   38篇
  1984年   24篇
  1983年   25篇
  1982年   23篇
  1981年   13篇
  1980年   28篇
  1979年   22篇
  1978年   27篇
  1977年   27篇
  1976年   18篇
  1968年   10篇
排序方式: 共有4586条查询结果,搜索用时 0 毫秒
91.
Currently the discovery and development of potent β-glucuronidase inhibitors is an active area of research due to the observation that increased activity of this enzyme is associated with many pathological conditions, such as colon cancer, renal diseases, and infections of the urinary tract. In this study, twenty-seven 2-aminopyrimidine derivatives 1–27 were synthesized by fusion of 2-amino-4,6-dichloropyrimidine with a variety of amines in the presence of triethylamine without using any solvent and catalyst, in good to excellent yields. All synthesized compounds were characterized by EI-MS, HREI-MS and NMR spectroscopy. Compounds 1–27 were then evaluated for their β-glucuronidase inhibitory activity, and among them, compound 24 (IC50 = 2.8 ± 0.10 µM) showed an activity much superior to standard D-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 µM). To predict the binding mode of the substrate and β-glucuronidase, in silico study was performed. Conclusively, this study has identified a potent β-glucuronidase inhibitor that deserves to be further studied for the development of pharmaceutical products.  相似文献   
92.
93.
In the current study, the anti-inflammatory and analgesic potential of Alnus nitida (leaves and fruits) was evaluated in the Sprague-Dawley rat. Traditionally, A. nitida was used for the treatment of inflammatory ailments. However, A. nitida leaves and fruits have not been yet reported regarding any potential medicinal effects. Leaves/fruits of A. nitida were extracted with methanol and fractionated to attain n-hexane, chloroform, ethyl acetate and aqueous fractions. These extracts were then evaluated for in vivo analgesic and anti-inflammatory potential. For in vivo anti-inflammatory activity, carrageenan-induced paw edema assay, Freunds’ complete adjuvant-induced edema, xylene-induced ear edema and histamine-induced paw edema models were used in rats, which showed significant (p < 0.01) reduction (70–80%) in edema in comparison of inflammatory controls. On other hand, for the analgesic assessment, hot plate assay and acetic acid-induced writhing tests were used, which showed a significant (p < 0.01) rise in latency time (40–60%) as compared with pain-induced controls. These results were comparable with standard drugs in a concentration-dependent manner and no mortality or toxicity was observed during all experiments. Then, for the identification of chemical constituents gas chromatography–mass spectrometry (GC-MS) analysis was performed, which indicated the presence of neophytadiene, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, phytol and vitamin E, justifying the use of A. nitida to treat inflammatory disorders.  相似文献   
94.
The microscale thermophoresis (MST) technique was utilized to investigate lactoferrin–drug interaction with the iron chelator, deferiprone, using label-free system. MST depends on the intrinsic fluorescence of one interacting partner. The results indicated a significant interaction between lactoferrin and deferiprone. The estimated binding constant for the lactoferrin–deferiprone interaction was 8.9 × 10−6 ± 1.6, SD, which is to be reported for the first time. Such significant binding between lactoferrin and deferiprone may indicate the potentiation of the drug secretion into a lactating mother’s milk. The technique showed a fast and simple approach to study protein–drug interaction while avoiding complicated labeling procedures. Moreover, the binding behavior of deferiprone within the binding sites of lactoferrin was investigated through molecular docking which reflected that deferiprone mediates strong hydrogen bonding with ARG121 and ASP297 in pocket 1 and forms H-bond and ionic interaction with ASN640 and ASP395, respectively, in pocket 2 of lactoferrin. Meanwhile, iron ions provide ionic interaction with deferiprone in both of the pockets. The molecular dynamic simulation further confirmed that the binding of deferiprone with lactoferrin brings conformational changes in lactoferrin that is more energetically stable. It also confirmed that deferiprone causes positive correlation motion in the interacting residues of both pockets, with strong negative correlation motion in the loop regions, and thus changes the dynamics of lactoferrin. The MM-GBSA based binding free energy calculation revealed that deferiprone exhibits ∆G TOTAL of −63,163 kcal/mol in pocket 1 and −63,073 kcal/mol in pocket 2 with complex receptor–ligand difference in pocket 1 and pocket 2 of −117.38 kcal/mol and −111.54 kcal/mol, respectively, which in turn suggests that deferiprone binds more strongly in the pocket 1. The free energy landscape of the lactoferrin–deferiprone complex also showed that this complex remains in a high energy state that confirms the strong binding of deferiprone with the lactoferrin. The current research concluded that iron-chelating drugs (deferiprone) can be transported from the mother to the infant in the milk because of the strong attachment with the lactoferrin active pockets.  相似文献   
95.
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey’s multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.  相似文献   
96.
(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1–3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1–3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 μΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 μΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 μΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1–3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.  相似文献   
97.
The current study was designed to investigate the feasibility of incorporating the water-insoluble lipophilic drug Alprazolam (Alp) into solid lipid nanoparticles (SLNs) to offer the combined benefits of the quick onset of action along with the sustained release of the drug. Therefore, compritol-based alprazolam-loaded SLNs (Alp-SLNs) would provide early relief from anxiety and sleep disturbances and long-lasting control of symptoms in patients with depression, thereby enhancing patient compliance. The optimized Alp-SLNs analyzed by DLS and SEM showed consistent particle size of 92.9 nm with PI values and standard deviation of the measurements calculated at <0.3 and negative surface charge. These characteristic values demonstrate the desired level of homogeneity and good physical stability of Alp-SLNs. The SLNs had a good entrapment efficiency (89.4%) and high drug-loading capacity (77.9%). SEM analysis revealed the smooth spherical morphology of the SLNs. The physical condition of alprazolam and absence of interaction among formulation components in Alp-SLNs was confirmed by FTIR and DSC analyses. XRD analysis demonstrated the molecular dispersion of crystalline alprazolam in Alp-SLNs. The in vitro release study implied that the release of Alp from the optimized Alp-SLN formulation was sustained as compared to the Alp drug solution because Alp-SLNs exhibited sustained release of alprazolam over 24 h. Alp-SLNs are a promising candidate to achieve sustained release of the short-acting drug Alp, thereby reducing its dosing frequency and enhancing patient compliance.  相似文献   
98.
Enzymes that degrade pectin are called pectinases. Pectinases of microbial origin are used in juice clarification as the process is cost-effective. This study screened a pectinase-producing bacterium isolated from soil and identified as Bacillus subtilis 15A B-92 based on the 16S rRNA molecular technique. The purified pectinase from the isolate showed 99.6 U/mg specific activity and 11.6-fold purity. The molecular weight of the purified bacterial pectinase was 14.41 ± 1 kD. Optimum pectinase activity was found at pH 4.5 and 50 °C, and the enzyme was 100% stable for 3.5 h in these conditions. No enzymatic inhibition or activation effect was seen with Fe2+, Ca2+, or Mg2+. However, a slight inhibition was seen with Cu2+, Mn2+, and Zn2+. Tween 20 and 80 slightly inhibited the pectinase, whereas iodoacetic acid (IAA), ethylenediaminetetraacetate (EDTA), urea, and sodium dodecyl sulfate (SDS) showed potent inhibition. The bacterial pectinase degraded citrus pectin (100%); however, it was inactive in the presence of galactose. With citrus pectin as the substrate, the Km and Vmax were calculated as 1.72 mg/mL and 1609 U/g, respectively. The high affinity of pectinase for its substrate makes the process cost-effective when utilized in food industries. The obtained pectinase was able to clarify orange and apple juices, justifying its application in the food industry.  相似文献   
99.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号