首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   1篇
化学   79篇
晶体学   8篇
力学   1篇
数学   16篇
物理学   76篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2016年   5篇
  2014年   2篇
  2013年   10篇
  2012年   12篇
  2011年   3篇
  2010年   6篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2004年   2篇
  2003年   3篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
  1954年   4篇
  1938年   2篇
  1936年   1篇
  1934年   2篇
排序方式: 共有180条查询结果,搜索用时 46 毫秒
101.
The source of the radon gas 222Rn in the ground air is the soil and the bedrock underneath. The potential radon level in the ground is given by the content of 226Ra in the ground. The presence of 226Ra is in turn dependent on the amount of 238U in the ground, and these two isotopes are not always found to be in equilibrium in a sample of soil or bedrock. Especially if the soil is washed out, the radium content may be reduced. When the soil is the relevant source of the radon gas, it is interesting to look for a possible relation between the radon level and the radium content of the soil.

In this paper we report on measurements of soil radon level carried out with SSNTDs at several European sites. Soil samples were collected at these sites and analysed with gamma spectrometry to determine their radium content. A comparison of the different degree of disequilibrium of radon, defined as the ratio between the actual and the secular equilibrium-with-radium soil radon concentration, found at the different sites and depths is presented. The influence on the result of soil type and climate is briefly discussed.  相似文献   

102.
103.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb22-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.

Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity.  相似文献   
104.
Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle’s neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value.  相似文献   
105.
A careful look into the pertinent models of poroelasticity reveals that in water-saturated sediments or soils, the seismic (P and S wave) velocity dispersion and attenuation in the low field-seismic frequency band (20-200 Hz) have a contrasting behavior in the porosity-permeability domain. Taking advantage of this nearly orthogonal behavior, a new approach has been proposed, which leads to unique estimates of both porosity and permeability simultaneously. Through realistic numerical tests, the effect of maximum frequency content in data and the integration of P and S waves on the accuracy and robustness of the estimates are demonstrated.  相似文献   
106.
Multiple effects may lead to significant differences between the relaxation rates of zero-quantum coherences (ZQC) and double-quantum coherences (DQC) generated between a pair of nuclei in solution. These include the interference between the anisotropic chemical shifts of the two nuclei participating in formation of the ZQC or DQC, the individual dipolar interactions of each of the two nuclei with the same proton, and the slow modulation of the isotropic chemical shifts of the two nuclei due to conformational exchange. Motional events that occur on a timescale much faster than the rotational correlation time (ps-ns) influence the first two effects, while the third results from processes that occur on a far slower timescale (mus-ms). An analysis of the differential relaxation of ZQC and DQC is thus informative about dynamics on the fast as well as the slow timescales. We present here an experiment that probes the differential relaxation of ZQC and DQC involving methyl groups in protein sidechains as an extension to our recently proposed experiments for the protein backbone. We have applied the methodology to (15)N, (13)C-labeled ubiquitin and used a detailed analysis of the measured relaxation rates using a simple single-axis diffusion model to probe the motional restriction of the C(next)H(next) bond vector where C(next) is the carbon that is directly bonded to a sidechain methyl carbon (C(methyl)). Comparison of the present results with the motional restriction of the C(next)C(methyl) bond (S(axis)(2)) reveals that the single-axis diffusion model, while valid in the fringes of the protein and for shorter chain amino acids, proves inadequate in the central protein core for long chain, asymmetrically branched amino acids where more complex motional models are necessary, as is the inclusion of the possibility of correlation between multiple motional modes. In addition, the present measurements report on the modulation of isotropic chemical shifts due to motion on the mus-ms timescale. Three Leu residues (8, 50, and 56) are found to display these effects. These residues lie in regions where chemical shift modulation had been detected previously both in the backbone and sidechain regions of ubiquitin.  相似文献   
107.
108.
The structure and electronic and optical properties of hydrogenated lithium clusters Li(n)H(m) (n = 1-30, m ≤ n) have been investigated by density functional theory (DFT). The structural optimizations are performed with the Becke 3 Lee-Yang-Parr (B3LYP) exchange-correlation functional with 6-311G++(d, p) basis set. The reliability of the method employed has been established by excellent agreement with computational and experimental data, wherever available. The turn over from two- to three-dimensional geometry in Li(n)H(m) clusters is found to occur at size n = 4 and m = 3. Interestingly, a rock-salt-like face-centered cubic structure is seen in Li(13)H(14). The sequential addition of hydrogen to small-sized Li clusters predicted regions of regular lattice in saturated hydrogenated clusters. This led us to focus on large-sized saturated clusters rather than to increase the number of hydrogen atoms monotonically. The lattice constants of Li(9)H(9), Li(18)H(18), Li(20)H(20), and Li(30)H(30) calculated at their optimized geometry are found to gradually approach the corresponding bulk values of 4.083. The sequential addition of hydrogen stabilizes the cluster, irrespective of the cluster size. A significant increase in stability is seen in the case of completely hydrogenated clusters, i.e., when the number of hydrogen atoms equals Li atoms. The enhanced stability has been interpreted in terms of various electronic and optical properties like adiabatic and vertical ionization potential, HOMO-LUMO gap, and polarizability.  相似文献   
109.
Recent fluorescence spectroscopy measurements of single-enzyme kinetics have shown that enzymatic turnovers form a renewal stochastic process in which the inverse of the mean waiting time between turnovers follows the Michaelis-Menten equation. We study enzyme kinetics at physiologically relevant mesoscopic concentrations using a master equation. From the exact solution of the master equation we find that the waiting times are neither independent nor identically distributed, implying that enzymatic turnovers form a nonrenewal stochastic process. The inverse of the mean waiting time shows strong departure from the Michaelis-Menten equation. The waiting times between consecutive turnovers are anticorrelated, where short intervals are more likely to be followed by long intervals and vice versa. Correlations persist beyond consecutive turnovers indicating that multiscale fluctuations govern enzyme kinetics.  相似文献   
110.
Glycoside derivatives of diospyrin (1) were synthesized for the first time, and the cytotoxicity of the novel compounds vis-à-vis their precursors were evaluated against two human cancer cell lines, viz. malignant melanoma (A375) and laryngeal carcinoma (Hep2). The IC(50) values were in the low micromolar range for all the compounds tested, and A375 cells showed comparatively greater sensitivity than Hep2. Most of the compounds exhibited enhanced activity as compared to the plant-derived quinonoid precursor of the series (1), while the aminophenyl mannosyl (6) was found to be the most effective derivative. In A375 cells, 6 (IC(50) = 0.02 microM) showed the maximum increase in cytotoxicity (approximately 35-fold) over that of 1 (IC(50) = 0.82 microM). Again, when the glycosides were evaluated at a given concentration (0.1 microM) for their relative capacity to generate ROS from A375 cells, the compound 6 could produce the highest amount of ROS. Incidentally, this derivative also showed a comparatively lower toxicity (IC(50) approximately 41 microM) when tested against normal human peripheral blood mononuclear cells, indicating a fair prospect of its development as a novel chemotherapeutic agent for the treatment of malignant melanoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号