首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4275篇
  免费   202篇
  国内免费   32篇
化学   3238篇
晶体学   24篇
力学   123篇
数学   529篇
物理学   595篇
  2023年   37篇
  2022年   46篇
  2021年   81篇
  2020年   100篇
  2019年   102篇
  2018年   71篇
  2017年   57篇
  2016年   138篇
  2015年   125篇
  2014年   153篇
  2013年   229篇
  2012年   301篇
  2011年   367篇
  2010年   163篇
  2009年   133篇
  2008年   325篇
  2007年   322篇
  2006年   308篇
  2005年   256篇
  2004年   216篇
  2003年   195篇
  2002年   157篇
  2001年   34篇
  2000年   35篇
  1999年   37篇
  1998年   36篇
  1997年   41篇
  1996年   57篇
  1995年   31篇
  1994年   29篇
  1993年   24篇
  1992年   21篇
  1991年   25篇
  1990年   25篇
  1989年   13篇
  1988年   12篇
  1987年   12篇
  1986年   8篇
  1985年   22篇
  1984年   28篇
  1983年   12篇
  1982年   14篇
  1981年   13篇
  1980年   19篇
  1979年   10篇
  1978年   16篇
  1977年   12篇
  1976年   13篇
  1975年   8篇
  1974年   10篇
排序方式: 共有4509条查询结果,搜索用时 15 毫秒
141.
Highly polar, non-gas-chromatographable compounds have few unambiguous analysis protocols for environmental applications. A recent environmental investigation, concerning the identification of a non-gas-chromatographable yellow component in chemical waste water and in effluents from a biological wastewater treatment plant required the use of a number of analytical approaches. Electrospray mass spectrometry, tandem mass spectrometry, high-performance liquid chromatography, nuclear magnetic resonance, and molecular spectroscopy of commercial and synthesized chlorodinitrophenol isomers were required in order to identify the specific isomer causing the color. The present report summarizes the electrospray ionization and tandem mass spectrometric studies that were used. The mass spectrometric study shows that two different isomers of chlorodinitrophenol exhibit very different collision-induced dissociation (CID) spectra. Differences in the tandem mass spectra can be attributed to the different structures of the anions formed from these two different isomers. Instrumentation that uses electrospray ionization and produces CID mass spectra and optical absorption spectra in a single analysis may be required in order to produce highly specific information on non-gas-chromatographable compounds found in the environment.  相似文献   
142.
A series of hindered Diels‐Alder adducts have been prepared from phencyclone, 1 , with various unusual symmetrical cyclic dienophiles, including cyclohexene, 2a ; vinylene carbonate, 2b ; vinylene trithiocarbonate, 2c ; and the N‐aryl maleimides: N‐(4‐dimethylamino‐3,5‐dinitrophenyl)maleimide (“Tuppy's maleimide”), 2d ; and N‐[3,5‐bis(trifluoromethyl)phenyl]maleimide, 2e . The highly hindered adducts, 3a‐e , respectively, were extensively characterized by one‐ and two‐dimensional NMR methods, observing proton, carbon‐13 and fluorine‐19. High resolution COSY45 spectra permitted rigorous proton NMR assignments. The 2D heteronuclear C‐H chemical shift correlation spectra (HETCOR, XHCORR) were obtained for adducts 3a‐d , allowing specific assignments for protonated carbons. Corrections to earlier proton NMR assignments for the vinylene carbonate adduct are given; results of the gated decoupling 13C NMR experiment for this adduct supported endo adduct stereochemistry. Relative proton chemical shifts for bridgehead phenyls of adduct 3c appeared anomalous relative to other adducts, suggesting possible special anisotropic interactions (with endocyclic sulfur or other anisotropic groups in the product) due to the unusual calculated orientation of the phenyls. The unsubstituted bridgehead phenyls in all adducts were shown to exhibit slow exchange limit (SEL) 1H and 13C spectra on the NMR timescales at ambient temperatures (7 tesla) showing slow rotations about the C(sp3)‐C(aryl sp2) bonds. The rapid rotation of the N‐aryl rings of the maleimide adducts was indicated by fast exchange limit spectra, suggesting that ortho substitution of the N‐aryl ring may be necessary to slow this rotation to the SEL regime. Ab initio geometry optimizations at the Hartree‐Fock level were carried out for each adduct, with the 6‐31G* basis sets. Appreciable geometry differences were seen in calculated structures, and significant NMR chemical shift differences were experimentally observed, depending on the nature of the groups attached to the (Z)‐HC=CH moiety of the dienophiles.  相似文献   
143.
Reaction of the cationic complex [WI(CO)(NCMe){Ph2P(CH2)PPh2}(η2-MeC2ME)][BF4] with an equimolar amount of MX (MX = NaCl, NaBr, NaI, KNO2, KNO3, NaNCS or KOH) in acetone at room temperature gave the neutral complex [WIX(CO){Ph2P(CH2)PPh2}(η2-MeC2Me)] (1–7) in good yield. Complexes 1–7 have been characterized by elemental analysis (C, H and N), IR and 1H NMR spectroscopy.  相似文献   
144.
145.
A number of chiral unsymmetrically N-substituted 1,4,7-triazacyclononane ligands have been prepared by modular methods. The key step in the synthesis centres on the macrocyclisation of three tertiary amide precursors under standard Richman-Atkins conditions which allows for subsequent N-functionalisation.  相似文献   
146.
We investigate the structural evolution of an A/B/C ternary mixture in which the A and B components can undergo a reversible chemical reaction to form C. We developed a lattice Boltzmann model for this ternary mixture that allows us to capture both the reaction kinetics and the hydrodynamic interactions within the system. We use this model to study a specific reactive mixture in which C acts as a surfactant, i.e., the formation of C at the A/B interface decreases the interfacial tension between the A and B domains. We found that the dynamics of the system is different for fluids in the diffusive and viscous regimes. In the diffusive regime, the formation of a layer of C at the interface leads to a freezing of the structural evolution in the fluid; the values of the reaction rate constants determine the characteristic domain size in the system. In the viscous regime, where hydrodynamic interactions are important, interfacial reactions cause a slowing down of the domain growth, but do not arrest the evolution of the mixture. The results provide guidelines for controlling the morphology of this complex ternary fluid.  相似文献   
147.
[reaction: see text] By using a sequence of regiocontrolled halogenation and palladium-catalyzed coupling reactions, the synthesis of variously substituted oxazoles from ethyl 2-chlorooxazole-4-carboxylate (2) was accomplished. The methodology was applied to the synthesis of a series of 2,4-disubstituted, 2,5-disubstituted, and 2,4,5-trisubstituted oxazoles.  相似文献   
148.
Ammo acid sequence prerequisites are described for the formation of c, ions observed in high-energy collision-induced decomposition spectra of peptides. It is shown that the formation of cn ions is promoted by the nature of the amino acid C-terminal to the cleavage site. A propensity for cn cleavage preceding threonine, and to a lesser extent tryptophan, lysine, and serine, is demonstrated where fragmentation is directed N-terminally at these residues. In addition, the nature of the residue N-terminal to the cleavage site is shown to have little effect on cn ion formation. A mechanism for cn ion formation is proposed and its applicability to the results observed is discussed.  相似文献   
149.
Gas‐phase C―C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1)]+ (where phen = 1,10‐phenanthroline), were formed by electrospray ionization. Upon collision‐induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1)]+, which undergoes gas‐phase ion‐molecule reactions (IMR) with acetate esters CH3COOR2 to yield the acetate complex [(phen)Ni (OOCCH3)]+ and a C―C coupling product R1‐R2. These Ni(II)/phenanthroline‐mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3, sp2, or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3sp3 or sp2sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C―C bond coupling step.  相似文献   
150.
The technique of proton transfer reaction mass spectrometry (PTR-MS) couples a proton transfer reagent, usually H3O+, with a drift tube and mass spectrometer to determine concentrations of volatile organic compounds. Here we describe a first attempt to use chemical ionization (CI) reagents other than proton transfer species inside a PTR-MS instrument. The ability to switch to other types of CI reagents provides an extra dimension to the technique. This capability is demonstrated by focusing on the ability to distinguish several isobaric aldehydes and ketones, including the atmospherically important molecules methacrolein and methyl vinyl ketone. Two CI reagents were selected, H3O+ and NO+, both being cleanly generated in a low intensity radioactive source prior to injection into the drift tube. By recording spectra with both of these reagents, the contributions from different isobaric molecules can be separated by virtue of their unique spectrometric 'fingerprints'. The work demonstrates that this form of instrumentation is not restricted to proton transfer reagents and is the basis of a more general technique, chemical ionization reaction mass spectrometry (CIRMS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号