首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4782篇
  免费   231篇
  国内免费   37篇
化学   3534篇
晶体学   30篇
力学   140篇
数学   588篇
物理学   758篇
  2023年   40篇
  2022年   56篇
  2021年   92篇
  2020年   111篇
  2019年   115篇
  2018年   84篇
  2017年   64篇
  2016年   161篇
  2015年   143篇
  2014年   181篇
  2013年   274篇
  2012年   334篇
  2011年   400篇
  2010年   188篇
  2009年   161篇
  2008年   351篇
  2007年   340篇
  2006年   332篇
  2005年   272篇
  2004年   236篇
  2003年   204篇
  2002年   166篇
  2001年   44篇
  2000年   45篇
  1999年   43篇
  1998年   42篇
  1997年   46篇
  1996年   66篇
  1995年   40篇
  1994年   31篇
  1993年   26篇
  1992年   28篇
  1991年   34篇
  1990年   28篇
  1989年   18篇
  1988年   14篇
  1987年   18篇
  1986年   13篇
  1985年   24篇
  1984年   29篇
  1983年   16篇
  1982年   18篇
  1981年   16篇
  1980年   20篇
  1979年   11篇
  1978年   17篇
  1977年   16篇
  1976年   14篇
  1975年   10篇
  1974年   10篇
排序方式: 共有5050条查询结果,搜索用时 618 毫秒
991.
The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied. Here, for the first time, by developing a microfluidic method that allowed the rapid preparation of high-quality siRNA-containing lipid nanoparticles (LNPs) for a large number of materials, we have shown that gene silencing assays employing lipoplexes result in a high rate of false negatives (~90%) that can largely be avoided through formulation. Seven novel materials with in vivo gene silencing potencies of >90% at a dose of 1.0 mg/kg in mice were discovered. This method will facilitate the discovery of next-generation reagents for LNP-mediated nucleic acid delivery.  相似文献   
992.
The quaternary copper chalcogenide Cu(2)ZnSnS(4) is an important emerging material for the development of low-cost and sustainable solar cells. Here we report a facile solution synthesis of stoichiometric Cu(2)ZnSnS(4) in size-controlled nanorod form (11 nm × 35 nm). The monodisperse nanorods have a band gap of 1.43 eV and can be assembled into perpendicularly aligned arrays by controlled evaporation from solution.  相似文献   
993.
Colloidal reduced ZnO nanocrystals are potent reductants for one-electron or multielectron redox chemistry, with reduction potentials tunable via the quantum confinement effect. Other methods for tuning the redox potentials of these unusual reagents are desired. Here, we describe synthesis and characterization of a series of colloidal Zn(1-x)Mg(x)O and Zn(0.98-x)Mg(x)Mn(0.02)O nanocrystals in which Mg(2+) substitution is used to tune the nanocrystal reduction potential. The effect of Mg(2+) doping on the band-edge potentials of ZnO was investigated using electronic absorption, photoluminescence, and magnetic circular dichroism spectroscopies. Mg(2+) incorporation widens the ZnO gap by raising the conduction-band potential and lowering the valence-band potential at a ratio of 0.68:0.32. Mg(2+) substitution is far more effective than Zn(2+) removal in raising the conduction-band potential and allows better reductants to be prepared from Zn(1-x)Mg(x)O nanocrystals than can be achieved via quantum confinement of ZnO nanocrystals. The increased conduction-band potentials of Zn(1-x)Mg(x)O nanocrystals compared to ZnO nanocrystals are confirmed by demonstration of spontaneous electron transfer from n-type Zn(1-x)Mg(x)O nanocrystals to smaller (more strongly quantum confined) ZnO nanocrystals.  相似文献   
994.
Single molecule fluorescence measurements have recently been used to probe the orientation of fluorescent lipid analogs doped into lipid films at trace levels. Using defocused polarized total internal reflection fluorescence microscopy (PTIRF-M), these studies have shown that fluorophore orientation responds to changes in membrane surface pressure and composition, providing a molecular level marker of membrane structure. Here we extend those studies by characterizing the single molecule orientations of six related BODIPY probes doped into monolayers of DPPC. Langmuir-Blodgett monolayers transferred at various surface pressures are used to compare the response from fluorescent lipid analogs in which the location of the BODIPY probe is varied along the length of the acyl chain. For each BODIPY probe location along the chain, comparisons are made between analogs containing phosphocholine and smaller fatty acid headgroups. Together these studies show a general propensity of the BODIPY analogs to insert into membranes with the BODIPY probe aligned along the acyl chains or looped back to interact with the headgroups. For all BODIPY probes studied, a bimodal orientation distribution is observed which is sensitive to surface pressure, with the population of BODIPY probes aligned along the acyl chains increasing with elevated surface pressure. Trends in the single molecule orientations for the six analogs reveal a configuration where optimal placement of the BODIPY probe within the acyl chain maximizes its sensitivity to the surrounding membrane structure. These results are discussed in terms of balancing the effects of headgroup association with acyl chain length in designing the optimal placement of the BODIPY probe.  相似文献   
995.
Jang DP  Kim I  Chang SY  Min HK  Arora K  Marsh MP  Hwang SC  Kimble CJ  Bennet KE  Lee KH 《The Analyst》2012,137(6):1428-1435
Although fast-scan cyclic voltammetry (FSCV) has contributed to important advances in neuroscience research, the technique is encumbered by significant analytical challenges. Confounding factors such as pH change and transient effects at the microelectrode surface make it difficult to discern the analytes represented by complex voltammograms. Here we introduce paired-pulse voltammetry (PPV), that mitigates the confounding factors and simplifies the analytical task. PPV consists of a selected binary waveform with a specific time gap between each of its two comprising pulses, such that each binary wave is repeated, while holding the electrode at a negative potential between the waves. This allows two simultaneous yet very different voltammograms (primary and secondary) to be obtained, each corresponding to the two pulses in the binary waveform. PPV was evaluated in the flow cell to characterize three different analytes, (dopamine, adenosine, and pH changes). The peak oxidation current decreased by approximately 50%, 80%, and 4% for dopamine, adenosine, and pH, in the secondary voltammogram compared with the primary voltammogram, respectively. Thus, the influence of pH changes could be virtually eliminated using the difference between the primary and secondary voltammograms in the PPV technique, which discriminates analytes on the basis of their adsorption characteristics to the carbon fiber electrode. These results demonstrate that PPV can be effectively used for differentiating complex analytes.  相似文献   
996.
Multinuclear (31P and 79/81Br), multifield (9.4, 11.75, and 21.1 T) solid‐state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single‐crystal X‐ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh4, because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non‐standard nuclei can correct or improve X‐ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, 79/81Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. 35/37Cl solid‐state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge‐including projector‐augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ11, on the shortest Br? P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey’s theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as 79/81Br, can afford insights into structure and bonding environments in the solid state.  相似文献   
997.
Bone is a composite material comprising a collagen fibril scaffold surrounded by crystals of carbonated‐hydroxyapatite mineral. It is well established that the relative proportions of mineral and collagen in mature bone are not definite and are adapted in order to ‘tune’ its mechanical properties. It is not known, however, how the mineral to collagen ratio is controlled. This paper uses Raman spectroscopy (which permits the probing of both the mineral and the collagen phases of bone) to explore the hypothesis that the control mechanism is related to the nature of the collagen and that bones with different levels of mineralisation have qualitatively different collagen. Raman spectra of functionally adapted bones with varying levels of mineralisation are presented and features that indicate the differences in the collagen's secondary structure (amide I band profiles) and post‐translational modification (hydroxyproline/proline ratios) are highlighted. The study demonstrates that Raman spectroscopy can provide a means to investigate the mechanisms that control the mineral to collagen ratio of bone. Understanding these mechanisms could pave the way towards the therapeutic alteration of the mineral to collagen ratio and, thus, the control of the mechanical properties of bone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
998.
The irreversibility properties of high-Tc superconductors are of major importance for technological applications. For example, a high irreversibility magnetic field is a more desirable quality for a superconductor [1]. The irreversibility line in the HT plane is constituted by experimental points, which divides the irreversible and reversible behavior of the magnetization. The irreversibility lines for series of La1.5+xBa1.5+xyCayCu3Oz polycrystalline samples with different doping were investigated. The samples were synthesized using the usual solid estate reaction method. Rietveld-type refinement of x-ray diffraction patterns permitted to determine the crystallization of material in a tetragonal structure. Curves of magnetization ZFC–FC for the system La1.5+xBa1.5+xyCayCu3Oz, were measured in magnetic fields of the 10–20,000 Oe, and allowed to obtain the values for the irreversibility and critical temperatures. The data of irreversibility temperature allowed demarcating the irreversibility line, Tirr(H). Two main lines are used for the interpretation of the irreversibility line: one of those which suppose that the vortexes are activated thermally and the other proposes that associated to Tirr a phase transition occurs. The irreversibility line is described by a power law. The obtained results allow concluding that in the system La1.5+xBa1.5+xyCayCu3Oz a characteristic bend of the Almeida–Thouless (AT) tendency is dominant for low fields and a bend Gabay–Toulouse (GT) behavior for high magnetic fields. This feature of the irreversibility line has been reported as a characteristic of granular superconductors and it corroborates the topological effects of vortexes mentioned by several authors 1 and 2.  相似文献   
999.
Accurate predictions of the acid-base behavior of hydroxyl groups at mineral surfaces are critical for understanding the trapping of toxic and radioactive ions in soil samples. In this work, we apply ab initio molecular dynamics (AIMD) simulations and potential-of-mean-force techniques to calculate the pK(a) of a doubly protonated oxygen atom bonded to a single Fe atom (Fe(I)OH(2)) on the goethite (101) surface. Using formic acid as a reference system, pK(a) = 7.0 is predicted, suggesting that isolated, positively charged groups of this type are marginally stable at neutral pH. Similarities and differences between AIMD and the more empirical multi-site complexation methodology are highlighted, particularly with respect to the treatment of hydrogen bonding with water and proton sharing among surface hydroxyl groups. We also highlight the importance of an electronic structure method that can accurately predict transition metal ion properties for goethite pK(a) calculations.  相似文献   
1000.
In this note, we announce a general result resolving the long-standing question of nonlinear modulational stability, or stability with respect to localized perturbations, of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation, establishing that spectral modulational stability, defined in the standard way, implies nonlinear modulational stability with sharp rates of decay. The approach extends readily to other second- and higher-order parabolic equations, for example, the Cahn Hilliard equation or more general thin film models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号