首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1748篇
  免费   51篇
  国内免费   2篇
化学   1367篇
晶体学   5篇
力学   27篇
数学   224篇
物理学   178篇
  2022年   15篇
  2021年   21篇
  2020年   23篇
  2019年   21篇
  2018年   11篇
  2016年   47篇
  2015年   30篇
  2014年   35篇
  2013年   57篇
  2012年   79篇
  2011年   76篇
  2010年   60篇
  2009年   50篇
  2008年   76篇
  2007年   80篇
  2006年   80篇
  2005年   55篇
  2004年   61篇
  2003年   46篇
  2002年   50篇
  2001年   31篇
  2000年   26篇
  1999年   15篇
  1998年   13篇
  1997年   32篇
  1996年   36篇
  1995年   22篇
  1994年   30篇
  1993年   23篇
  1992年   15篇
  1991年   21篇
  1990年   22篇
  1989年   21篇
  1988年   23篇
  1987年   20篇
  1986年   25篇
  1985年   29篇
  1984年   23篇
  1983年   13篇
  1982年   29篇
  1981年   31篇
  1980年   30篇
  1979年   26篇
  1978年   25篇
  1977年   22篇
  1976年   16篇
  1975年   13篇
  1972年   10篇
  1966年   9篇
  1965年   11篇
排序方式: 共有1801条查询结果,搜索用时 31 毫秒
121.
We will demonstrate how optical tweezers can be combined with a microfluidic system to create a versatile microlaboratory. Cells are moved between reservoirs filled with different media by means of optical tweezers. We show that the cells, on a timescale of a few seconds, can be moved from one reservoir to another without the media being dragged along with them. The system is demonstrated with an experiment where we expose E. coli bacteria to different fluorescent markers. We will also discuss how the system can be used as an advanced cell sorter. It can favorably be used to sort out a small fraction of cells from a large population, in particular when advanced microscopic techniques are required to distinguish various cells. Patterns of channels and reservoirs were generated in a computer and transferred to a mask using either a sophisticated electron beam technique or a standard laser printer. Lithographic methods were applied to create microchannels in rubber silicon (PDMS). Media were transported in the channels using electroosmotic flow. The optical system consisted of a combined confocal and epi-fluorescence microscope, dual optical tweezers and a laser scalpel.  相似文献   
122.
123.
Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device.The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.  相似文献   
124.
Fourier transform ion-cyclotron resonance (FTICR) mass spectrometry offers several advantages for the analysis of biological samples, including excellent mass resolution, ultra-high mass measurement accuracy, high sensitivity, and wide mass range. We report the application of a nano-HPLC system coupled to an FTICR mass spectrometer equipped with nanoelectrospray source (nano-HPLC/nano-ESI-FTICRMS) for proteome analysis. Protein identification in proteomics is usually conducted by accurately determining peptide masses resulting from enzymatic protein digests and comparing them with theoretically digested protein sequences from databases. A tryptic in-solution digest of bovine serum albumin was used to optimize experimental conditions and data processing. Spots from Coomassie Blue and silver-stained two-dimensional (2D) gels of human thyroid tissue were excised, in-gel digested with trypsin, and subsequently analyzed by nano-HPLC/nano-ESI-FTICRMS. Additionally, we analyzed 1D-gel bands of membrane preparations of COS-6 cells from African green monkey kidney as an example of more complex protein mixtures. Nano-HPLC was performed using 1-mm reverse-phase C-18 columns for pre-concentration of the samples and reverse-phase C-18 capillary columns for separation, applying water/acetonitrile gradient elution conditions at flow rates of 200 nL/min. Mass measurement accuracies smaller than 3 ppm were routinely obtained. Different methods for processing the raw data were compared in order to identify a maximum number of peptides with the highest possible degree of automation. Parallel identification of proteins from complex mixtures down to low-femtomole levels makes nano-HPLC/nano-ESI-FTICRMS an attractive approach for proteome analysis.  相似文献   
125.
The new method of analysis of relative isotopologue abundances (ARIA) applied here is based on the evaluation of total isotope patterns of tryptic protein fragments measured by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) to calculate the mixing ratios of composites consisting of stable isotope labelled and isotopically natural (unlabelled) proteins, as described in an accompanying paper in this issue. Recently, Sechi (Rapid Commun. Mass Spectrom. 2002; 16: 1416-1424) and Gehanne et al. (Rapid Commun. Mass Spectrom. 2002; 16: 1692-1698) introduced the use of differential quantitative mass analysis by MALDI-TOFMS using mixtures of standard proteins alkylated prior to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with either acrylamide (AA) or deuterium-labelled [2,3,3'-D(3)]-acrylamide (D3AA). In the present study we validate the AA/D3AA system, firstly by measuring the yield of proteins alkylated with AA, and secondly by using differential radioactive labels ((125)I and (131)I) to quantitatively establish that non-comigration in 2D-PAGE is negligible. ARIA is then applied to quantitatively estimate the relative proportions of peptides labelled with AA or D3AA in the validated system, using typical silver-stained 2D-PAGE protein spots from 2D gels loaded with 150 microg of total liver protein. The precision and limitations of ARIA quantification of peptides differentially alkylated with isotopomeric reagents are discussed.  相似文献   
126.
Macrocyclic peptidomimetics having a mixed peptide-peptoid backbone have been synthesized and shown to possess antibiotic activity against gram-positive and -negative bacteria with a low hemolytic activity against human erythrocytes; one is shown to adopt a regular beta-hairpin conformation by NMR in aqueous solution.  相似文献   
127.
128.
129.

Background  

S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号