首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   27篇
  国内免费   1篇
化学   466篇
晶体学   2篇
力学   5篇
数学   52篇
物理学   58篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   27篇
  2015年   19篇
  2014年   15篇
  2013年   35篇
  2012年   36篇
  2011年   37篇
  2010年   37篇
  2009年   26篇
  2008年   31篇
  2007年   34篇
  2006年   42篇
  2005年   23篇
  2004年   34篇
  2003年   19篇
  2002年   11篇
  2001年   12篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有583条查询结果,搜索用时 531 毫秒
571.
The manual interpretation of tandem mass spectra of synthetic polymers is very time-consuming. Therefore, a new software tool was developed to accelerate the interpretation of spectra obtained without requiring any further knowledge about the polymer class or the fragmentation behavior under high-energy collision-induced dissociation (CID) conditions. The software only requires an alphabetical list of elements and a peak list of the measured substance as an xml file for the evaluation of the chosen mass spectrum. Tandem mass spectra of different homopolymers, like poly(2-oxazoline)s, poly(ethylene glycol) and poly(styrene), were interpreted by the new software tool. This contribution describes a fast and automated software tool for the rapid analysis of homopolymers.  相似文献   
572.
Eritadenine, 2(R),3(R)‐dihydroxy‐4‐(9‐adenyl)‐butyric acid, is a cholesterol‐reducing compound naturally occurring in the shitake mushroom (Lentinus edodes). To identify the unknown Raman spectrum of this compound, pure synthetic eritadenine was examined and the vibrational modes were assigned by following the synthesis pathway. This was accomplished by comparing the known spectra of the starting compounds adenine and D ‐ribose with the spectra of a synthesis intermediate, methyl 5‐(6‐Aminopurin‐9H‐9‐yl)‐2,3‐O‐isopropylidene‐5‐deoxy‐β‐D ‐ribofuranoside (MAIR) and eritadenine. In the Raman spectrum of eritadenine, a distinctive vibrational mode at 773 cm−1 was detected and ascribed to vibrations in the carbon chain, ν(C C). A Raman line that arose at 1212 cm−1, both in the Raman spectrum of MAIR and eritadenine, was also assigned to ν(C C). Additional Raman lines detected at 1526 and at 1583 cm−1 in the Raman spectrum of MAIR and eritadenine were assigned to ν(N C) and a deformation of the purine ring structure. In these cases the vibrational modes are due to the linkage between adenine and the ribofuranoside moiety for MAIR, and between adenine and the carbon chain for eritadenine. This link is also the cause for the disappearance of adenine specific Raman lines in the spectrum of both MAIR and eritadenine. Several vibrations observed in the spectrum of D ‐ribose were not observed in the Raman spectrum of eritadenine due to the absence of the ribose ring structure. In the Raman spectrum of MAIR some of the D ‐ribose specific Raman lines disappeared due to the introduction of methyl and isopropylidene moieties to the ribose unit. With the approach presented in this study the so far unknown Raman spectrum of eritadenine could be successfully identified and is presented here for the first time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
573.
Plant surfaces are the interfaces of the organisms with respect to their environment. In the micro-dimension they show an enormous variety of functional three-dimensional structures. Their materials and structures developed over millions of years by evolutionary processes in which their functionality has been proven and selected by environmental pressures. As a result, nature developed highly functional materials with several amazing properties like superhydrophobicity and superhydrophilicity. These functional structures are built up by a complex biopolymer called cuticle. The cuticle is mainly composed of a three-dimensional network of cutin, and integrated and superimposed lipids called "waxes". Superimposed waxes are also called "epicuticular waxes". Epicuticular waxes often form two- and three-dimensional structures, in dimensions between hundreds of nanometers and some micrometers, which influence the wettability, self-cleaning behaviour and the light reflection at the cuticle interface. This review gives a brief introduction into the functions of the plant epicuticular waxes and summarises the current knowledge about their morphologies, crystal structures, growth by self-assembly and provides an overview about the microscopy and preparation techniques for their analysis.  相似文献   
574.
Nanoactuators made from nanoparticulate NiTi shape memory alloy show potential in the mechanical stimulation of bone tissue formation from stem cells. We demonstrate the fabrication of Ni, Ti, and NiTi shape memory alloy nanoparticles and their biocompatibility to human adipose-derived stem cells. The stoichiometry and phase transformation property of the bulk alloy is preserved during attrition by femtosecond laser ablation in liquid, giving access to colloidal nanoactuators. No adverse effect on cell growth and attachment is observed in proliferation assay and environmental electron scanning microscopy, making this material attractive for mechanical stimulation of stem cells.  相似文献   
575.
576.
577.
578.
Diselenadiphosphetane Diselenides and Triselenadiphospholane Diselenides – Synthesis and Characterization by 31P and 77Se Solid‐State NMR Spectroscopy 1,3‐Diselena‐2,4‐diphosphetane‐2,4‐diselenides (RPSe2)2 with R = Me, Et, t‐Bu, Ph, 4‐Me2NC6H4, 4‐MeOC6H4 have been synthesized by different methods. The insoluble compounds were investigated by 31P and 77Se solid‐state NMR and the purity of the compounds has been checked by their CP MAS sideband NMR spectra. The structure of the investigated compounds has been confirmed by the isotropic and anisotropic values of the chemical shifts and the 1JP–Se coupling constants. In addition, two new 1,2,4‐triselena‐3,5‐diphospholane‐3,5‐diselenides, (RPSe2)2Se (R = Me, Et), formed under similar synthesis conditions, were investigated. Their structure was derived from the 77Se satellites of 31P solution spectra and from solid‐state spectra. For (t‐BuPSe2)2 the experimentally obtained principal values of phosphorus and selenium shielding tensors are compared with values from IGLO calculations (HF und SOS DFPT). The calculated orientations of the principal axes are discussed.  相似文献   
579.
580.
Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2S2O8) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号