首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   6篇
  国内免费   1篇
化学   163篇
力学   5篇
数学   12篇
物理学   61篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   20篇
  2012年   14篇
  2011年   18篇
  2010年   8篇
  2009年   14篇
  2008年   13篇
  2007年   11篇
  2006年   15篇
  2005年   11篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1937年   1篇
  1930年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
61.
To any action of a compact quantum group on a von Neumann algebra which is a direct sum of factors we associate an equivalence relation corresponding to the partition of a space into orbits of the action. We show that in case all factors are finite-dimensional (i.e., when the action is on a discrete quantum space) the relation has finite orbits. We then apply this to generalize the classical theory of Clifford, concerning the restrictions of representations to normal subgroups, to the framework of quantum subgroups of discrete quantum groups, itself extending the context of closed normal quantum subgroups of compact quantum groups. Finally, a link is made between our equivalence relation in question and another equivalence relation defined by R. Vergnioux.  相似文献   
62.
We study actions of compact quantum groups on type I-factors, which may be interpreted as projective representations of compact quantum groups. We generalize to this setting some of Woronowicz?s results concerning Peter-Weyl theory for compact quantum groups. The main new phenomenon is that for general compact quantum groups (more precisely, those which are not of Kac type), not all irreducible projective representations have to be finite-dimensional. As applications, we consider the theory of projective representations for the compact quantum groups associated with group von Neumann algebras of discrete groups, and consider a certain non-trivial projective representation for quantum SU(2).  相似文献   
63.
The crystal structures of K2S2O7, KNaS2O7 and Na2S2O7 have been solved and/or refined from X-ray synchrotron powder diffraction data and conventional single-crystal data. K2S2O7: From powder diffraction data, monoclinic C2/c, Z=4, a=12.3653(2), b=7.3122(1), , β=93.0792(7)°, RBragg=0.096. KNaS2O7: From powder diffraction data; triclinic , Z=2, a=5.90476(9), b=7.2008(1), , α=101.7074(9), β=90.6960(7), γ=94.2403(9)°, RBragg=0.075. Na2S2O7: From single-crystal data; triclinic , Z=2, a=6.7702(9), b=6.7975(10), , α=116.779(2), β=96.089(3), γ=84.000(3)°, RF=0.033. The disulphate anions are essentially eclipsed. All three structures can be described as dichromate-like, where the alkali cations coordinate oxygens of the isolated disulphate groups in three-dimensional networks. The K-O and Na-O coordinations were determined from electron density topology and coordination geometry. The three structures have a cation-disulphate chain in common. In K2S2O7 and Na2S2O7 the neighbouring chains are antiparallel, while in KNaS2O7 the chains are parallel. The differences between the K2S2O7 and Na2S2O7 structures, with double-, respectively single-sided chain connections and straight, respectively, corrugated structural layers can be understood in terms of the differences in size and coordinating ability of the cations.  相似文献   
64.
65.
In this work, we report on the synthesis and characterization of thermoresponsive poly(N-vinylcaprolactam), PNVCL, nanocomposite hydrogels containing nanocrystalline cellulose (CNC) by the use of frontal polymerization technique, which is a convenient, easy and low energy-consuming method of macromolecular synthesis. CNC was obtained by acid hydrolysis of commercial microcrystalline cellulose and dispersed in dimethylsulfoxide. The dispersion was characterized by TEM analysis and mixed with suitable amounts of N-vinylcaprolactam for the synthesis of PNVCL nanocomposite hydrogels having a CNC concentration ranging between 0.20 and 2.0 wt%. The nanocomposite hydrogels were analyzed by SEM and their swelling and rheological features were investigated. It was found that CNC decreases the swelling ratio even at small concentration. The rheological properties of the hydrogels indicated that CNC strongly influenced the viscoelastic modulus, even at concentrations as low as 0.1 wt%: both G′ and G″, and the viscosity increase with CNC content, indicating that the nanocellulose has a great potential to reinforce PNVCL polymer hydrogels.  相似文献   
66.
The utilization of poly[(R)‐3‐hydroxybutyric acid] (PHB) biopolymer for a device that uses charging process in friction to convert mechanical energy into electric power is reported. The triboelectric generator (TEG) is fabricated by stacking a drop cast PHB film between indium tin oxide coated poly(ethylene terephthalate) (PET) and PET sheet. The charge transfer takes place through an established general rule according to which the material with higher dielectric constant becomes positively charged. Furthermore, the utilization of such TEG as pressure sensor is illustrated. TEGs have the potential of harvesting energy from touch screen, mechanical vibration, and more, with great applications in self‐powered sensors for heat and environmental monitoring and even large‐scale applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 859–863  相似文献   
67.
The crystal structures of the title compounds, ammonium risedronate dihydrate, NH4+·C7H10NO7P2·2H2O, (I), and potassium risedronate dihydrate, K+·C7H10NO7P2·2H2O, (II), have been determined from single‐crystal X‐ray data collected at 120 K. Compound (I) forms a three‐dimensional hydrogen‐bonded network which connects the ammonium and risedronate ions and the water mol­ecules. In compound (II), the K+ ions are seven‐coordinated in a capped distorted trigonal prism. The coordination polyhedra form chains by corner‐sharing, and these chains are connected by phosphon­ate groups into layers in the ac plane. The layers are stacked and connected by hydrogen bonds in the b direction. The risedronate conformation is determined by intra­molecular inter­actions fine‐tuned by crystal packing effects. All H‐atom donors in both structures are involved in hydrogen bonding, with DA distances between 2.510 (2) and 3.009 (2) Å.  相似文献   
68.
Rapid- and step-scan photoacoustic (PA) infrared spectra of three fractions of a Syncrude post-extraction oil sand were analyzed in detail in this work. The rapid-scan spectra showed that the samples were comprised primarily of kaolinite, quartz, silica, siderite, and residual hydrocarbons, and that the proportions of these constituents were different for each fraction. Depth profiling of the three post-extraction oil sands was accomplished using both rapid- and step-scan PA infrared spectroscopy. The results confirmed that kaolinite is more abundant in the near-surface region, whereas quartz and hydrocarbons are concentrated at greater depths. The modulation frequency dependence of the PA intensities for all three fractions was consistent with a model in which the samples are thermally thick; in other words, the thermal diffusion length (roughly equal to the sampling depth) was less than the particle sizes of all three samples. The results of this study are consistent with published reports on the PA infrared spectra of fine tailings generated during bitumen extraction and the spectroscopic and thermophysical characterization of clay soils and an appropriate model clay.  相似文献   
69.
A study of the minor-groove recognition of A/T-rich DNA sites by Ni(II).L-Arg-Gly-His and Ni(II).D-Arg-Gly-His was carried out with a fluorescence-based binding assay, one- and two-dimensional (1D and 2D) NMR methodologies, and molecular simulations. Fluorescence displacement titrations revealed that Ni(II).L-Arg-Gly-His binds to A/T-rich sequences better than the D-Arg diastereomer, while NMR investigations revealed that both metallopeptides bind to the minor groove of an AATT core region as evidenced by an intermolecular nuclear Overhauser effect (NOE) between each metallopeptide His imidazole C4 proton and the C2 proton of adenine. Results from molecular dynamics simulations of these systems were consistent with the experimental data and indicated that the His imidazole N-H, the N-terminal peptide amine, and Arg side chains of each metallopeptide are major determinants of minor-groove recognition by functioning as H-bond donors to the O2 of thymine residues or N3 of adenine residues.  相似文献   
70.
Silicon oxynitride has been used as a shallow gate oxide material for microelectronics and its thickness has been reduced over the years to only a few tens of angstroms due to device size scaling. The nitride distribution and density characteristic in the gate oxide thus becomes imperative for the devices. The shallow depth profiling capability using time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) has huge potential for the nitrogen characterization of the shallow gate oxide film. In this article, both positive and negative spectra of TOF‐SIMS on silicon oxynitride have been extensively studied and it was found that the silicon nitride clusters SixN? (x = 1–4) are able to represent the nitrogen profiles because their ion yields are high enough, especially for the low‐level nitride doping in the oxide, which is formed by the annealing of nitric oxide on SiO2/Si. The gate oxide thickness measured by the TOF‐SIMS profiling method using 18O or CsO profile calibration was found to correlate very well with transmission electron microscope measurement. The nitrogen concentration in the gate oxide measured using the TOF‐SIMS method was consistent with the results obtained using the dynamic SIMS method, which is currently applied to relatively thicker oxynitride films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号