Previous studies of different solvates of 2-methylpyridyllithium (2-picolyllithium) have uncovered electronic structures corresponding to aza-allyl and enamido resonance forms of the metallated pyridine-based compounds. Here, we report the synthesis and characterization of [2-CH2Li(THF)2C5H4N], a new THF solvate. X-ray crystallographic studies reveal a dimeric arrangement featuring a non-planar eight-membered [NCCLi]2 ring, in which the primary cation-anion interaction is between the central Li atom and the C atom of the deprotonated methyl group [length, 2.285(2) Å], suggesting a new carbanionic resonance structure for this 2-picolyllithium series. The significant carbanionic character of [2-CH2Li(THF)2C5H4N] was confirmed by gas-phase DFT calculations [B3LYP/6-311+G(d)] with the calculated electron density interrogated by means of quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. For comparison these computational analyses were also performed on the literature structures of [2-CH2Li(2-Picoline)C5H4N] and [2-CH2Li(PMDETA)C5H4N]. In a reactivity study, [2-CH2Li(THF)2C5H4N] was found to undergo nucleophilic addition to pyridine to generate dipyridylmethane in a good yield. 相似文献
Employing Hamada’s chemistry with MAOS optimization of several steps, an expedient route to key (3S,5S)- and (3R,5R)-γ-hydroxy and (3R,5S)-γ-chloropiperazic acids, was developed en route to a total synthesis of piperazimycin A. 相似文献
Colorless poly(vinyl chloride)s (PVC) containing up to 1.6 allylic chlorines per molecule have been prepared by controlled random dehydrochlorination with a strong base. The effect of temperature in the ?50 to +24°C range on the number of allylic chlorines and color of PVC has been investigated by ozonization experiments and UV–visible spectroscopy. A two-parameter kinetic model has been developed which quantitatively accounts for the observations and points the way for further research. 相似文献
An acid-activated montmorillonite-illite type of clay collected from the Gulbarga region of Karnataka, India was examined for removing copper and zinc ions from industrial wastewater containing Cu(II), Zn(II) and minor amounts of Pb(II). Langmuir, Freundlich, Brunauer-Emmett-Teller (BET), and competitive Langmuir (two competing ions) isotherms were fitted to experimental data and the goodness of their fit for adsorption was compared. The shapes of isotherms obtained indicated multilayer adsorption of Cu(II) and monolayer adsorption of Zn(II) on the acid-activated clay. Competitive adsorption was found to be significant due to the presence of Cu(II) in the wastewater. 相似文献
The crystal structures of the perovskite manganites SrxCa1−x−yNdyMnO3 with y=0.1 or 0.2 have been investigated using synchrotron X-ray powder diffraction. At room temperature the structures change from depending on the cation distribution, the different structures exhibiting different tilts of the MnO6 octahedra. High temperature diffraction measurements demonstrate the presence of, an apparently continuous, isosymmetric I4/mcm to I4/mcm phase transition associated with the removal of long range orbital ordering. Heating the manganites to still higher temperatures results in a continuous transition to the cubic structure. A feature of such transitions is the continuous evolution of the octahedral tilt angle through the I4/mcm to I4/mcm phase transition. The orthorhombic structures do not exhibit orbital ordering and although a first order transition to the tetragonal structure is observed in Sr0.4Ca0.5Nd0.1MnO3, this high temperature tetragonal structure does not exhibit orbital ordering. 相似文献
The first systematic series of single-crystal diffraction structures of azo lake pigments is presented (Lithol Red with cations=Mg(II), Ca(II), Sr(II), Ba(II), Na(I) and Cd(II)) and includes the only known structures of non-Ca examples of these pigments. It is shown that these commercially and culturally important species show structural behaviour that can be predicted from a database of structures of related sulfonated azo dyes, a database that was specifically constructed for this purpose. Examples of the successful structural predictions from the prior understanding of the model compounds are that 1) the Mg salt is a solvent-separated ion pair, whereas the heavier alkaline-earth elements Ca, Sr and Ba form contact ion pairs, namely, low-dimensional coordination complexes; 2) all of the Lithol Red anions exist as the hydrazone tautomer and have planar geometries; and 3) the commonly observed packing mode of alternating inorganic layers and organic bilayers is as expected for an ortho-sulfonated azo species with a planar anion geometry. However, the literature database of dye structures has no predictive use for organic solvate structures, such as that of the observed Na Lithol Red DMF solvate. Interestingly, the Cd salt is isostructural with the Mg salt and not with the Ca salt. It is also observed that linked eight-membered [MOSO](2) rings are the basic coordination motif for all of the known structures of Ca, Sr and Ba salts of sulfonated azo pigments in which competing carboxylate groups are absent. 相似文献
The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance
have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials
display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along
with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics
and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor
devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller
size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are
particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures
and carbon nanotubes. 相似文献
Transport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K.