首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2098篇
  免费   89篇
  国内免费   15篇
化学   1617篇
晶体学   12篇
力学   32篇
综合类   16篇
数学   223篇
物理学   302篇
  2023年   18篇
  2022年   15篇
  2021年   39篇
  2020年   43篇
  2019年   54篇
  2018年   36篇
  2017年   25篇
  2016年   54篇
  2015年   50篇
  2014年   56篇
  2013年   116篇
  2012年   148篇
  2011年   146篇
  2010年   76篇
  2009年   92篇
  2008年   157篇
  2007年   134篇
  2006年   127篇
  2005年   133篇
  2004年   116篇
  2003年   85篇
  2002年   92篇
  2001年   23篇
  2000年   28篇
  1999年   22篇
  1998年   23篇
  1997年   23篇
  1996年   22篇
  1995年   12篇
  1994年   15篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   19篇
  1989年   10篇
  1988年   10篇
  1987年   12篇
  1986年   5篇
  1985年   19篇
  1984年   12篇
  1983年   13篇
  1982年   14篇
  1981年   16篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   8篇
  1976年   9篇
  1975年   5篇
  1974年   6篇
排序方式: 共有2202条查询结果,搜索用时 0 毫秒
61.
The success of organic light emitting diodes (OLED) has been witnessed by the commercialization of this technology for manufacturing the vivid and colorful displays used in our daily life now. The prospective growth of OLED technology on display industry will be optimistic. Over the last three decades, many different approaches on material and device designs have been implemented for improving the efficiency and stability of OLED devices. These efforts install main cornerstones to support the great achievement of OLED technology. However, until now, the performance and stability of blue OLEDs still have some concerns. This troublesome issue should be totally conquered before the large‐scale manufactures dominated over other display technologies, particularly liquid crystal‐based displays, takes place. Though significant progress has already been made to achieve high performance and long lifetime blue OLEDs, this topic still remains as one of the hot researches in OLEDs. We have been working on this area for about two decades and made some notable contributions. Consequently, in this personal account we have outlined our efforts to obtain better performing blue OLEDs by utilizing a range of emitters based on fluorescence, phosphorescence, delayed fluorescence and exciplex systems. We have also developed some novel host materials for blue OLEDs, which are worth mentioning in this account.  相似文献   
62.
Spatiotemporal control over biochemical signaling processes involving G protein‐coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed sixteen photoswitchable ligands for the human histamine H3 receptor (hH3R). Upon illumination, key compound 65 decreases its affinity for the hH3R by 8.5‐fold and its potency in hH3R‐mediated Gi protein activation by over 20‐fold, with the trans and cis isomer both acting as full agonist. In real‐time two‐electrode voltage clamp experiments in Xenopus oocytes, 65 shows rapid light‐induced modulation of hH3R activity. Ligand 65 shows good binding selectivity amongst the histamine receptor subfamily and has good photolytic stability. In all, 65 (VUF15000) is the first photoswitchable GPCR agonist confirmed to be modulated through its affinity and potency upon photoswitching while maintaining its intrinsic activity, rendering it a new chemical biology tool for spatiotemporal control of GPCR activation.  相似文献   
63.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   
64.
To prepare cross‐linked silicone (silicone rubber) particles in an aqueous medium, we investigated two synthesis methods involving a miniemulsion system. The first method was based on cationic ring‐opening polymerization of cyclic siloxane, which is a common synthetic route for linear silicone oil and uses octamethylcyclotetrasiloxane (D4) as the monomer and dimeric D4 (bis‐D4) as the cross‐linker. Although this method produces silicone particles, the particles do not remain in the particulate state after drying because of low cross‐linking density. The polymerization mechanism of this method was also investigated, which proceeds under the ring‐opening reaction of D4 in monomer droplets and upon polycondensation of hydrolyzed D4, which occurs in the water phase (ie, outside the monomer droplets). This mechanism implied that introducing the cross‐linking structure into particles is difficult because of the low solubility of bis‐D4 in water. To overcome these difficulties, we demonstrated a second method of preparing silicone particles based on the thiol‐Michael addition reaction between thiol‐terminated silicone oil and triacrylate in miniemulsion systems. Transmission electron microscopy images indicated that the silicone particles obtained in the particulate state upon drying and the aggregates of these particles showed elasticity.  相似文献   
65.
We show how to apply a general theoretical approach to nonequilibrium statistical mechanics, called Maximum Caliber, originally suggested by E. T. Jaynes [Annu. Rev. Phys. Chem. 31, 579 (1980)], to a problem of two-state dynamics. Maximum Caliber is a variational principle for dynamics in the same spirit that Maximum Entropy is a variational principle for equilibrium statistical mechanics. The central idea is to compute a dynamical partition function, a sum of weights over all microscopic paths, rather than over microstates. We illustrate the method on the simple problem of two-state dynamics, A<-->B, first for a single particle, then for M particles. Maximum Caliber gives a unified framework for deriving all the relevant dynamical properties, including the microtrajectories and all the moments of the time-dependent probability density. While it can readily be used to derive the traditional master equation and the Langevin results, it goes beyond them in also giving trajectory information. For example, we derive the Langevin noise distribution rather than assuming it. As a general approach to solving nonequilibrium statistical mechanics dynamical problems, Maximum Caliber has some advantages: (1) It is partition-function-based, so we can draw insights from similarities to equilibrium statistical mechanics. (2) It is trajectory-based, so it gives more dynamical information than population-based approaches like master equations; this is particularly important for few-particle and single-molecule systems. (3) It gives an unambiguous way to relate flows to forces, which has traditionally posed challenges. (4) Like Maximum Entropy, it may be useful for data analysis, specifically for time-dependent phenomena.  相似文献   
66.
67.
The positron annihilation lifetime (PAL) of a series of copolyimides and copolyamides with microphase‐separated structures was measured to investigate the effects of different hard‐segment polymers on the PAL properties of soft‐segment domains of poly(dimethyl‐siloxane) (PDMS) and poly(ethylene oxide) (PEO). The lifetime (τ3) and intensity (I3) of the long‐lived component are given as a function of the PDMS or PEO content for a series of copolymers, of which the density roughly obeys the additive rule except for the PDMS‐segmented copolyamides. The PDMS‐segmented copolyimides and copolyamides show much smaller I3 values than those estimated from the additive rule. The lifetime distribution of the long‐lived component for the PDMS‐segmented copolyamides is composed of two components. The longer‐lifetime component is attributed to pure PDMS domains, and the shorter‐lifetime component is attributed to the polyamide domains, intermediate phases, and PDMS domains containing small amounts of short amide blocks. Despite the high PDMS content, the latter component is rather large. Thus, the positronium formation in the PDMS domains of the copolyimides and copolyamides is effectively reduced. This can be explained by the combination of the difference in the electron affinity of the PDMS and polyimide or polyamide segments and the incomplete phase separation. The PEO‐segmented copolyimides show much smaller I3 values than those predicted from the additive rule. This is likely attributable to the effects of the intermediate phases. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1123–1132, 2000  相似文献   
68.
Trifluoromethyl ketones were found to be coupled with arynes in three modes depending upon their substitution patterns, namely C-C bond cleavage, [2+2] cycloaddition and O-arylation.  相似文献   
69.
The high substrate specificity of fluoroacetate dehalogenase was explored by using crystallographic analysis, fluorescence spectroscopy, and theoretical computations. A crystal structure for the Asp104Ala mutant of the enzyme from Burkholderia sp. FA1 complexed with fluoroacetate was determined at 1.2 ? resolution. The orientation and conformation of bound fluoroacetate is different from those in the crystal structure of the corresponding Asp110Asn mutant of the enzyme from Rhodopseudomonas palustris CGA009 reported recently (J. Am. Chem. Soc. 2011, 133, 7461). The fluorescence of the tryptophan residues of the wild-type and Trp150Phe mutant enzymes from Burkholderia sp. FA1 incubated with fluoroacetate and chloroacetate was measured to gain information on the environment of the tryptophan residues. The environments of the tryptophan residues were found to be different between the fluoroacetate- and chloroacetate-bound enzymes; this would come from different binding modes of these two substrates in the active site. Docking simulations and QM/MM optimizations were performed to predict favorable conformations and orientations of the substrates. The F atom of the substrate is oriented toward Arg108 in the most stable enzyme-fluoroacetate complex. This is a stable but unreactive conformation, in which the small O-C-F angle is not suitable for the S(N)2 displacement of the F(-) ion. The cleavage of the C-F bond is initiated by the conformational change of the substrate to a near attack conformation (NAC) in the active site. The second lowest energy conformation is appropriate for NAC; the C-O distance and the O-C-F angle are reasonable for the S(N) 2 reaction. The activation energy is greatly reduced in this conformation because of three hydrogen bonds between the leaving F atom and surrounding amino acid residues. Chloroacetate cannot reach the reactive conformation, due to the longer C-Cl bond; this results in an increase of the activation energy despite the weaker C-Cl bond.  相似文献   
70.
The potential of the internal rotation of the methyl group was determined for o-, m-, and p-fluorotoluene cations by pulsed field ionization spectroscopy. The potential of the internal rotational motion was also surveyed for other toluene derivative cations. It was found that the barrier height generally increases by ionization. The increase in the barrier height has been discussed in connection with the reduction of the internal rotational constant B by ionization. The geometrical distortion of the methyl group during the internal rotation has been suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号