首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2360篇
  免费   93篇
  国内免费   16篇
化学   1761篇
晶体学   14篇
力学   44篇
综合类   16篇
数学   250篇
物理学   384篇
  2023年   21篇
  2022年   15篇
  2021年   41篇
  2020年   45篇
  2019年   54篇
  2018年   39篇
  2017年   28篇
  2016年   60篇
  2015年   54篇
  2014年   58篇
  2013年   127篇
  2012年   160篇
  2011年   159篇
  2010年   86篇
  2009年   98篇
  2008年   184篇
  2007年   152篇
  2006年   144篇
  2005年   156篇
  2004年   130篇
  2003年   96篇
  2002年   100篇
  2001年   32篇
  2000年   34篇
  1999年   26篇
  1998年   25篇
  1997年   23篇
  1996年   25篇
  1995年   11篇
  1994年   19篇
  1993年   12篇
  1992年   12篇
  1991年   7篇
  1990年   17篇
  1989年   9篇
  1988年   12篇
  1987年   15篇
  1986年   8篇
  1985年   22篇
  1984年   17篇
  1983年   14篇
  1982年   20篇
  1981年   21篇
  1980年   19篇
  1979年   9篇
  1978年   6篇
  1977年   8篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
排序方式: 共有2469条查询结果,搜索用时 15 毫秒
101.
The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the calculated reaction energies that are endothermic by at least 20 kcal/mol.  相似文献   
102.
The success of organic light emitting diodes (OLED) has been witnessed by the commercialization of this technology for manufacturing the vivid and colorful displays used in our daily life now. The prospective growth of OLED technology on display industry will be optimistic. Over the last three decades, many different approaches on material and device designs have been implemented for improving the efficiency and stability of OLED devices. These efforts install main cornerstones to support the great achievement of OLED technology. However, until now, the performance and stability of blue OLEDs still have some concerns. This troublesome issue should be totally conquered before the large‐scale manufactures dominated over other display technologies, particularly liquid crystal‐based displays, takes place. Though significant progress has already been made to achieve high performance and long lifetime blue OLEDs, this topic still remains as one of the hot researches in OLEDs. We have been working on this area for about two decades and made some notable contributions. Consequently, in this personal account we have outlined our efforts to obtain better performing blue OLEDs by utilizing a range of emitters based on fluorescence, phosphorescence, delayed fluorescence and exciplex systems. We have also developed some novel host materials for blue OLEDs, which are worth mentioning in this account.  相似文献   
103.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   
104.
To prepare cross‐linked silicone (silicone rubber) particles in an aqueous medium, we investigated two synthesis methods involving a miniemulsion system. The first method was based on cationic ring‐opening polymerization of cyclic siloxane, which is a common synthetic route for linear silicone oil and uses octamethylcyclotetrasiloxane (D4) as the monomer and dimeric D4 (bis‐D4) as the cross‐linker. Although this method produces silicone particles, the particles do not remain in the particulate state after drying because of low cross‐linking density. The polymerization mechanism of this method was also investigated, which proceeds under the ring‐opening reaction of D4 in monomer droplets and upon polycondensation of hydrolyzed D4, which occurs in the water phase (ie, outside the monomer droplets). This mechanism implied that introducing the cross‐linking structure into particles is difficult because of the low solubility of bis‐D4 in water. To overcome these difficulties, we demonstrated a second method of preparing silicone particles based on the thiol‐Michael addition reaction between thiol‐terminated silicone oil and triacrylate in miniemulsion systems. Transmission electron microscopy images indicated that the silicone particles obtained in the particulate state upon drying and the aggregates of these particles showed elasticity.  相似文献   
105.
Spatiotemporal control over biochemical signaling processes involving G protein‐coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed sixteen photoswitchable ligands for the human histamine H3 receptor (hH3R). Upon illumination, key compound 65 decreases its affinity for the hH3R by 8.5‐fold and its potency in hH3R‐mediated Gi protein activation by over 20‐fold, with the trans and cis isomer both acting as full agonist. In real‐time two‐electrode voltage clamp experiments in Xenopus oocytes, 65 shows rapid light‐induced modulation of hH3R activity. Ligand 65 shows good binding selectivity amongst the histamine receptor subfamily and has good photolytic stability. In all, 65 (VUF15000) is the first photoswitchable GPCR agonist confirmed to be modulated through its affinity and potency upon photoswitching while maintaining its intrinsic activity, rendering it a new chemical biology tool for spatiotemporal control of GPCR activation.  相似文献   
106.
The precise alignment of multiple layers of metal–organic framework (MOF) thin films, or MOF‐on‐MOF films, over macroscopic length scales is presented. The MOF‐on‐MOF films are fabricated by epitaxially matching the interface. The first MOF layer (Cu2(BPDC)2, BPDC=biphenyl‐4,4′‐dicarboxylate) is grown on an oriented Cu(OH)2 film by a “one‐pot” approach. Aligned second (Cu2(BDC)2, BDC=benzene 1,4‐dicarboxylate, or Cu2(BPYDC)2, BPYDC=2,2′‐bipyridine‐5,5′‐dicarboxylate) MOF layers can be deposited using liquid‐phase epitaxy. The co‐orientation of the MOF films is confirmed by X‐ray diffraction. Importantly, our strategy allows for the synthesis of aligned MOF films, for example, Cu2(BPYDC)2, that cannot be grown on a Cu(OH)2 surface. We show that aligned MOF films furnished with Ag nanoparticles show a unique anisotropic plasmon resonance. Our MOF‐on‐MOF approach expands the chemistry of heteroepitaxially oriented MOF films and provides a new toolbox for multifunctional porous coatings.  相似文献   
107.
An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 °C a small C-term effect was observed in a flow rate range of 1–4 μL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 μm porous silica particles while operating at a flow rate of 2 μL/min. The peak capacity per unit time of the 50 mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame.  相似文献   
108.
109.
A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the root-mean-square deviation (RMSD). We present a simple derivation, based on quaternions, for the optimal solid body transformation (rotation-translation) that minimizes the RMSD between two sets of vectors. We prove that the quaternion method is equivalent to the well-known formula due to Kabsch. We analyze the various cases that may arise, and give a complete enumeration of the special cases in terms of the arrangement of the eigenvalues of a traceless, 4 x 4 symmetric matrix. A key result here is an expression for the gradient of the RMSD as a function of model parameters. This can be useful, for example, in finding the minimum energy path of a reaction using the elastic band methods or in optimizing model parameters to best fit a target structure.  相似文献   
110.
Recognition of chiral catechols using oxo-titanium phthalocyanine   总被引:1,自引:0,他引:1  
Oxo-titanium phthalocyanine (TiOPc) derivatives of catechin and hematoxylin (natural ortho-diol type chiral compounds) have been prepared and characterized by spectral and chromatographic techniques. It is demonstrated that the TiOPc unit is an excellent template for chiral recognition through its isolated Q-transitions. The formation of a helical dimeric complex with hematoxylin induces strong CD-activity in the Q-band region. Ab initio geometry optimizations were combined with a Kuhn-Kirkwood coupled-oscillator mechanism to obtain the absolute configuration of hematoxylin. In addition, it is shown that the described chiroptical recognition method is sensitive to slight conformational changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号