首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   11篇
化学   168篇
晶体学   10篇
数学   12篇
物理学   31篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   15篇
  2008年   12篇
  2007年   8篇
  2006年   8篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   14篇
  2001年   10篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1977年   5篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
161.
The behaviour of the sol–gel prepared, amorphous solids, high surface area (HS) aluminium fluoride and magnesium fluoride in promoting room temperature dehydrochlorination of tert-butyl chloride (ButCl), in their catalytic activity for the dismutation of chlorodifluoromethane and in the temperature programmed desorption of ammonia is similar, indicating that, unexpectedly, both solids exhibit significant surface Lewis acidity. Using a similar approach, it has been demonstrated that surface Lewis acidity in HS-MgF2 is enhanced by the incorporation of amorphous iron(III) fluoride and probably also by amorphous aluminium(III) fluoride. A second, unexpected feature is the substantial retention of anhydrous hydrogen chloride by all the solids, which is observed by the use of chlorine-36 labelling, when they are exposed at room temperature either to ButCl or to HCl directly. The detailed behaviour of H36Cl towards HS-AlF3 depends on the fluorinating agent, dichlorodifluoromethane or anhydrous hydrogen fluoride, which is used in the second stage of HS-AlF3 synthesis. This observation and the pattern of the results obtained overall lead to the proposal that strongly adsorbed HCl behaves as an unconventional Lewis base towards these solids.  相似文献   
162.
A non-aqueous sol-gel Al-based fluoride has been subjected to the microwave solvothermal process. The final material depends on the temperature heat treatment used. Three types of material have been prepared: 1) for low temperature heat treatment (90 degrees C) X-ray amorphous alkoxy fluoride was obtained; 2) for the highest temperature used (200 degrees C) the metastable form beta-AlF3 was obtained with a very large surface area of 125 m2 g(-1). The mechanism of the amorphous=crystalline transformation has been rationalised by the occurrence of a decomposition reaction of the gel fluoride induced by the microwave irradiation. 3) Finally, at intermediate temperature (180 degrees C) a multi-component material mixture exhibiting a huge surface area of 525 m2 g(-1) has been obtained and further investigated after mild post-treatment fluorination using F2 gas. The resulting aluminium-based fluoride still possesses a high-surface-area of 330 m2 g(-1). HRTEM revealed that the solid is built from large particles (50 nm) identified as alpha-AlF3, and small ones (10 nm), relative to an unidentified phase. This new high-surface-area material exhibits strong Lewis acidity as revealed by pyridine adsorption and catalytic tests. By comparison with other materials, it has been shown that whatever the composition/structure of the Al-based fluoride materials, the number of strong Lewis acid sites is related to the surface area, highlighting the role of surface reconstruction occurring on a nanoscopic scale on the formation of the strongest Lewis acid sites.  相似文献   
163.
Let G=(VE) be a simple graph and for every vertex vV let L(v) be a set (list) of available colors. G is called L-colorable if there is a proper coloring φ of the vertices with φ(v)L(v) for all vV. A function f:VN is called a choice function of G and G is said to be f-list colorable if G is L-colorable for every list assignment L choice function is defined by size(f)=vVf(v) and the sum choice number χsc(G) denotes the minimum size of a choice function of G.Sum list colorings were introduced by Isaak in 2002 and got a lot of attention since then.For r3 a generalized θk1k2kr-graph is a simple graph consisting of two vertices v1 and v2 connected by r internally vertex disjoint paths of lengths k1,k2,,kr (k1k2?kr).In 2014, Carraher et al. determined the sum-paintability of all generalized θ-graphs which is an online-version of the sum choice number and consequently an upper bound for it.In this paper we obtain sharp upper bounds for the sum choice number of all generalized θ-graphs with k12 and characterize all generalized θ-graphs G which attain the trivial upper bound |V(G)|+|E(G)|.  相似文献   
164.
The effect of the structural properties and the oxidation state of Mn on the 18O isotope exchange behaviour of ternary manganites (La1–xSrxMnO3, La0.5Sr1.5MnO4 and SrMnO3) has been studied. All types of 18O isotope exchange homomolecular, partially and completely heteromolecular) take place on the very active manganites with perovskite (LaMnO3 and La0.7Sr0.3MnO3) and perovskite-like (SrMnO3) structure, but not on the less active K2NiF4-structure (La0.5Sr1.5MnO4). The highest 18O exchange activity is observed for La0.7Sr0.3MnO3, for which the completely heteromolecular 18O exchange starts to occur at 520 K, already, a Ton which is typical for excellent redox catalysts. The influence of the structural properties on the 18O exchange and oxygen diffusion behaviour of the manganites is much more pronounced than that of the Mn3+/Mn4+ ratio. The different reduction behaviour of the manganites with perovskite and K2NiF4-structure can be explained by means of the bond-valence model.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
165.
The synthesis and crystal structures of guanidinium monofluorophosphate and hydrogen monofluorophosphates with the following cations: piperazinium, di‐ and triethylammonium, guanidinium, and dimethyluronium, are described and discussed. The structures of the acid salts consist of hydrogen‐bonded HPO3F tetrahedra, which form infinite chains or cyclic dimers. The organic cations link these units together. All of the hydrogen bond systems observed consist of short O—H···O and longer N—H···O bonds. No O—H···F or N—H···F bonds were found. The F atom avoids hydrogen acceptor positions in the structures. The thermal behavior of [NHEt3]HPO3F was also studied.  相似文献   
166.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4 anions and neutral HF molecules. The H2PO4 anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released.  相似文献   
167.
Halogeno Metallates of Transition Elements with Cations of Nitrogen‐containing Heterocyclic Bases. VII Two Oxidation States and Four Different Iron Coordinations in one Compound. Synthesis, Crystal Structure, and Spectroscopic Characterization of 1,4‐Dimethylpiperazinium Chloroferrate(II, III), (dmpipzH2)6[FeIICl4]2[FeIIICl4]2[FeIICl5] [FeIIICl6] The title compound being stable on air crystallizes from aqueous hydrochloric acid solutions in the trigonal space group R3 with a = 13,197(1), c = 38,405(6) Å. Besides the cations in chair form, the structure contains six discrete, mononuclear chloroferrate anions arranged on a threefold axis. Tetrahedral, octahedral, and, for the first time with iron(II), trigonal bipyramidal metal coordinations occur. Four sub‐spectra contributing to the 57Fe Mössbauer spectrum can be distinguished and have been attributed to all four types of chloroferrate anions in the structure. The Raman spectroscopic investigation of orientated single crystals allows to recognize polarized and non‐polarized vibrations as well as to attribute all observed frequencies.  相似文献   
168.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   
169.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   
170.
Vacuum line kinetic studies of the reaction of p-toluenesulfonyl chloride and benzene or toluene, using aluminum chloride as the catalyst and dichloromethane as the solvent were determined at 25°C by means of gas chromatography. The reaction is first-order in arene, tosyl chloride, and in AlCl3 as catalyst. Noncompetitive results are kT/kB=22±7 with a product sulfone isomer distribution: ortho, 14±1%; meta, 4.3±0.2%; and para 82±1%. With hexadeuteriobenzene kH/kD was determined to be 1.8±0.1. Rate constant ratios and product isomer distributions were also determined competitively: with AlCl3, kT/kB=30±2; % ortho, 13±1; % meta, 4.0±0.5; % para, 84±3; with SbCl5, kT/kB=40±4; % ortho 10.3±0.4; % meta, 4.7±0.2; and % para, 85.0±0.5. The kT/kB ratio for AlCl3 and the meta sulfone product percentages for both AlCl3 and SbCl5 are considerably higher than those reported in the literature. NMR and Raman studies suggest a molecular complex between p-tosyl chloride and AlCl3, with coordination through oxygen as the dominant species and the probable electrophile in CH2Cl2. A reaction mechanism consistent with the kinetic and spectroscopic results is proposed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 367–372,1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号