首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   31篇
  国内免费   8篇
化学   1034篇
晶体学   16篇
力学   66篇
数学   334篇
物理学   617篇
  2018年   18篇
  2016年   20篇
  2015年   25篇
  2014年   23篇
  2013年   200篇
  2012年   53篇
  2011年   46篇
  2010年   31篇
  2009年   35篇
  2008年   38篇
  2007年   56篇
  2006年   55篇
  2005年   67篇
  2004年   44篇
  2003年   39篇
  2002年   39篇
  2001年   49篇
  2000年   51篇
  1999年   44篇
  1998年   35篇
  1997年   33篇
  1996年   24篇
  1995年   34篇
  1994年   38篇
  1993年   29篇
  1992年   25篇
  1991年   33篇
  1990年   23篇
  1989年   32篇
  1988年   21篇
  1987年   31篇
  1986年   29篇
  1985年   30篇
  1984年   35篇
  1983年   24篇
  1982年   28篇
  1980年   18篇
  1979年   30篇
  1978年   23篇
  1977年   25篇
  1976年   20篇
  1975年   28篇
  1974年   19篇
  1973年   24篇
  1972年   22篇
  1970年   21篇
  1968年   31篇
  1967年   56篇
  1966年   61篇
  1965年   19篇
排序方式: 共有2067条查询结果,搜索用时 15 毫秒
71.
New Phellandrene Derivatives from the Root Oil of Angelica archangelica L . 2-Nitro-1,5-p-menthadiene ( 5 ), trans- and cis-6-nitro-1(7), 2-p-menthadiene ( 6 and 7 ), trans-1(7), 5-p-menthadien-2-yl acetate ( 9 ) and a formal phellandrene derivative, 7-isopropyl-5-methyl-5-bicyclo [2.2.2]octen-2-one ( 16 ), have been identified in the root oil of Angelica archangelica L . Starting from (?)-(R)-α-phellandrene ( 1 ) (R)- 5 , (4R, 6S)- 6 /(4R, 6R)- 7 , (2S, 4R)- 9 and (1R, 4R, 7R)- 16 as well as (2S, 4R)- 11 , (2R, 4R)- 12 and (2R, 4R)- 10 have been prepared.  相似文献   
72.
73.
74.
75.
Well established routes for obtaining stiff and strong polyethylene (PE) involve solid state drawing either of solution crystallized gel films or melt crystallized spherulitic PE. The aim of this work is to show the potential of melt deformation as an alternative route for obtaining highly oriented products. Our previous work on the melt deformation route showed that oriented PE fibers could be directly extruded under appropriately controlled conditions [8,9]. Here, we show that PE films (or filaments) can also be melt drawn in the temperature window 130–160 °C, thus yielding oriented products. The advantage of melt drawing over direct melt extrusion is that it allows a wider operational latitude and thus does not require such carefully controlled conditions.The morphology produced by melt deformation is different from solid state deformation and consists of extended chain fibrils with platelet overgrowths. The relative amount of fibrils and platelets depends on operating parameters. The temperature window of PE melt drawing is identified with the regime where some flow induced crystallization takes place. The conditions for melt drawability are of wider generality for crystallizable flexible chain polymers. They are: (i) adequate strain rate to overcome entropie resistance to chain extension, (ii) but not high enough to activate the elastic response of the transient networks in the entangled system, (iii) sufficient strain to fully extend the chain, (iv) appropriate temperature for flow-induced crystallization and strain hardening, and (v) cooling to freeze the oriented structure.Ultra high molecular weight PEs were not the most suitable for melt drawing due to their high recoverable elongation in the melt (melt elasticity) in addition to added limitations imposed by their nascent grain systeme. Our work suggests that an optimum molecular weight for melt drawing is¯M w(400–900)×103 with further possibilities for improvement through multimodal distributions.  相似文献   
76.
On Coinage Metal Mercury Chalcogenide Halides. IV Hydrothermal Synthesis and Crystal Structure of CuHgSI and CuHg2S2I The hydrothermal reaction of CuI with α‐HgS in diluted aqueous HI‐solution as solvent at 180 °C yields dark red crystals of CuHgSI. The compound crystallizes orthorhombic in the space group Pna21 with a = 718.3(1) pm, b = 834.3(2) pm and c = 698.9(1) pm and Z = 4. CuHg2S2I was obtained by the hydrothermal reaction of CuI with α‐HgS in diluted HI‐solution at 300 °C as black crystals. The compound crystallizes orthorhombic in the space group Cmc21 with a = 1261.8(3) pm, b = 722.4(1) pm and c = 693.7(1) pm and Z = 4. Both crystal structures could be explained as distorted version of the Wurtzite structure type in which two different types of anion‐lattices are built up.  相似文献   
77.
Selective thinning of forests in the western United States will generate a large, sustainable quantity of softwood residues that can be an attractive feedstock for fuel ethanol production. The major species available from thinning of forests in northern California and the eastern Rocky Mountains include white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii), and Ponderosa pine (Pinus ponderosa). Douglas fir chips were soaked in 0.4% sulfuric acid solution, then pretreated with steam at 200 – 230°C for 1 – 5 min. After pretreatment, 90 – 95% of the hemicellulose and as much as 20% of the cellulose was solubilized in water, and 90% of the remaining cellulose can be hydrolyzed to glucose by cellulase enzyme. The prehydrolysates, at as high as 10% total solid concentration, can be readily fermented by the unadapted yeastSaccharomyces cerevisiae D5A.  相似文献   
78.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号