首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2636篇
  免费   56篇
  国内免费   23篇
化学   1897篇
晶体学   29篇
力学   44篇
数学   346篇
物理学   399篇
  2021年   23篇
  2020年   21篇
  2019年   36篇
  2018年   25篇
  2017年   21篇
  2016年   41篇
  2015年   44篇
  2014年   45篇
  2013年   134篇
  2012年   146篇
  2011年   184篇
  2010年   87篇
  2009年   86篇
  2008年   149篇
  2007年   165篇
  2006年   174篇
  2005年   142篇
  2004年   148篇
  2003年   104篇
  2002年   95篇
  2001年   44篇
  2000年   20篇
  1999年   26篇
  1998年   31篇
  1997年   29篇
  1996年   51篇
  1995年   39篇
  1994年   30篇
  1993年   27篇
  1992年   32篇
  1991年   33篇
  1990年   14篇
  1989年   11篇
  1988年   18篇
  1987年   22篇
  1985年   27篇
  1984年   32篇
  1983年   29篇
  1982年   31篇
  1981年   23篇
  1980年   28篇
  1979年   35篇
  1978年   37篇
  1977年   18篇
  1976年   20篇
  1975年   24篇
  1974年   15篇
  1973年   11篇
  1972年   11篇
  1969年   12篇
排序方式: 共有2715条查询结果,搜索用时 15 毫秒
961.
We prove that if A is a finite algebra with a parallelogram term that satisfies the split centralizer condition, then A is dualizable. This yields yet another proof of the dualizability of any finite algebra with a near unanimity term, but more importantly proves that every finite module, group or ring in a residually small variety is dualizable.  相似文献   
962.
Solid-phase synthetic templates for Au nanoparticles were developed using Merrifield resins and polyamidoamine (PAMAM) dendrimers. This synthetic scheme affords the opportunity to prepare metal nanoparticles in the absence of air and water, and it does not necessitate phase transfer agents that can be difficult to remove in subsequent steps. Amine-terminated generation 5 PAMAM (G5NH2) dendrimers were grafted to anhydride functionalized polystyrene resin beads and alkylated with 1,2-epoxydodecane to produce G5C12anch. The anchored dendrimers bound both CoII and AuIII salts from toluene solutions at ratios comparable to those of solution phase alkyl-terminated PAMAM dendrimers. The encapsulated AuIII salts could be reduced with NaBH4 to produce anchored dendrimer encapsulated nanoparticles (DENs). Treatment of the anchored DENs with decanethiol in toluene extracted the Au nanoparticles from the dendrimers as monolayer protected clusters (MPCs). After a brief NaCN etch, the anchored dendrimers were readily recycled and a subsequent synthesis of decanethiol Au MPCs was performed with comparable MPC yield and particle size distribution.  相似文献   
963.
A series of DMAP-stabilized (DMAP=4-dimethylaminopyridine) N-silylphosphoranimine cations [DMAPPR(2)==NSiMe(3)](+), bearing R=Cl ([8](+)), Me ([10 a](+)), Me/Ph ([10 b](+)), Ph ([10 c](+)), and OCH(2)CF(3) ([10 d](+)) substituents, have been synthesized from the reactions of the parent phosphoranimines Cl(3)P==NSiMe(3) (3) and XR(2)P==NSiMe(3) (X=Cl (9), Br (11); R=Me (9 a and 11 a), Me/Ph (9 b and 11 b), Ph (9 c and 11 c), and OCH(2)CF(3) (9 d and 11 d)) with DMAP and silver salts as halide abstractors. Reactions in the absence of silver salts yield the corresponding cations, with halide counterions. The stability of the salts is highly dependent on the phosphoranimine substituent and the nature of the counteranion, such that electron-withdrawing substituents and non-coordinating anions yield the most stable salts. X-ray structural determination of the cations reveal extremely short phosphoranimine P--N bond lengths for the cations [8](+) and [10 d](+) (1.47-1.49 A) in which electron-withdrawing substituents are present and a longer phosphoranimine P--N length for the cation [10 a](+) (1.53 A) in which electron-donating substituents are present. Very wide bond angles at nitrogen are observed for the salts containing the cation [10 d](+) (158-166 degrees ) and indicate significant sp hybridization at the nitrogen centre.  相似文献   
964.
965.
966.
Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.  相似文献   
967.
A density functional theory based computational approach to describing the mechanistic course of the allene azide cycloaddition cascade sequence has been developed. The results of these calculations permit characterization of key reactive intermediates (diradicals and/or indolidenes) and explain the different behaviors observed in the experimental studies between conjugated and nonconjugated species. Furthermore, computational analysis of certain intermediates offer insight into issues of regioselectivity and stereoselectivity in cases where different reaction channels are in competition, suggesting suitable substitutions to achieve a single regioisomer in the indole synthesis via azide-allene cyclization.  相似文献   
968.
The reaction between either MgI2 or CaI2 and 2 equiv of [(Me3Si)2{Me2(H3B)P}C]K (2) in toluene gives the corresponding organo-alkaline earth metal compounds [(Me3Si)2{Me2(H3B)P}C]2M in moderate to good yields [M = Mg (3), Ca (4)]. Compound 3 crystallizes solvent-free, whereas X-ray quality crystals of 4 could not be obtained in the absence of coordinating solvents; crystallization of 4 from cold methylcyclohexane/THF gives the solvate [(Me3Si)2{Me2(H3B)P}C]2Ca(THF)4 (4a). The corresponding heavier alkaline earth metal complexes [(Me3Si)2{Me2(H3B)P}C]2M(THF)5 [M = Sr (7), Ba (8)] are obtained from the reaction between MI2 and 2 equiv of 2 in THF, followed by recrystallization from cold methylcyclohexane/THF. Compound 3 degrades over a period of several weeks at room-temperature both in the solid state and in toluene solution to give the free phosphine-borane (Me3Si)2{Me2(H3B)P}CH (5) as the sole phosphorus-containing product. In addition, compounds 3, 4, and 4a react rapidly with THF in toluene solution, yielding 5 as the sole phosphorus-containing product; in contrast, compounds 7 and 8 are stable toward this solvent.  相似文献   
969.
The approximate representation of a quantum solid as an equivalent composite semiclassical solid is considered for insulating materials. The composite is comprised of point ions moving on a potential energy surface. In the classical bulk domain this potential energy is represented by potentials constructed to give the same structure and elastic properties as the underlying quantum solid. In a small local quantum domain the potential is determined from a detailed quantum calculation of the electronic structure. The new features of this well-studied problem are (1) a clearly stated theoretical context in which approximations leading to the model are introduced, (2) the representation of the classical domain by potentials focused on reproducing the specific quantum response being studied, (3) development of "pseudoatoms" for a realistic treatment of charge densities where bonds have been broken to define the environment of the quantum domain, and (4) inclusion of polarization effects on the quantum domain due to its distant bulk environment. This formal structure is illustrated in detail for a SiO(2) nanorod. More importantly, each component of the proposed modeling is tested quantitatively for this case, verifying its accuracy as a faithful multiscale model of the original quantum solid. To do so, the charge density of the entire nanorod is calculated quantum mechanically to provide the reference by which to judge the accuracy of the modeling. The construction of the classical potentials, the rod, the pseudoatoms, and the multipoles is discussed and tested in detail. It is then shown that the quantum rod, the rod constructed from the classical potentials, and the composite classical/quantum rod all have the same equilibrium structure and response to elastic strain. In more detail, the charge density and forces in the quantum subdomain are accurately reproduced by the proposed modeling of the environmental effects even for strains beyond the linear domain. The accuracy of the modeling is shown to apply for two quite different choices for the underlying quantum chemical method: transfer Hamiltonian and density functional methods.  相似文献   
970.
A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号