首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   53篇
化学   851篇
晶体学   13篇
力学   11篇
数学   36篇
物理学   146篇
  2023年   13篇
  2022年   17篇
  2021年   19篇
  2020年   26篇
  2019年   39篇
  2018年   23篇
  2017年   12篇
  2016年   38篇
  2015年   32篇
  2014年   30篇
  2013年   54篇
  2012年   104篇
  2011年   97篇
  2010年   38篇
  2009年   45篇
  2008年   60篇
  2007年   49篇
  2006年   74篇
  2005年   44篇
  2004年   45篇
  2003年   40篇
  2002年   38篇
  2001年   10篇
  2000年   12篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   5篇
  1984年   6篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1970年   1篇
  1969年   4篇
  1967年   2篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
31.
Visible light‐mediated radical alkenylation of benzylsulfonium salts was achieved by means of fac‐Ir(ppy)3 as a photocatalyst, giving allylbenzenes as products. A variety of functional groups, such as halogen, ester, and cyano, were well tolerated in this transformation. Starting benzylsulfonium salts could be readily prepared from benzyl alcohols by an acid‐mediated substitution, increasing the synthetic utility of this transformation.  相似文献   
32.
Aminosilane-treated molecular layers on glass surfaces are frequently used as functional platforms for biosensor preparation. All the amino groups present on the surface are not available in reactive forms, because surface amino groups interact with remaining unreacted surface silanol groups. Such nonspecific interactions might reduce the efficiency of chemical immobilization of biomolecules such as DNA, enzymes, antibodies, etc., in biosensor fabrication. To improve immobilization efficiency we have used additional surface silanization with alkylsilane (capping) to convert the remaining silanol groups into Si–O–Si linkages, thereby liberating the amino groups from nonspecific interaction with the silanol groups. We prepared different types of capped amine surface and evaluated the effect of capping on immobilization efficiency by investigating the fluorescence intensity of Cy3-NHS (N-hydroxysuccinimide) dye that reacted with amino groups. The results indicate that most of the capped amine surfaces resulted in enhanced efficiency of immobilization of Cy3-NHS compared with the untreated control amine surface. We found a trend that trialkoxysilanes had greater capping effects on immobilization efficiency than monoalkoxysilanes. It was also found that the aliphatic chain of alkylsilane, which does not participate in the capping of the silanol, had an important function in enhancing immobilization efficiency. These results would be useful for preparation of an amine-modified surface platform, with enhanced immobilization efficiency, which is essential for developing many kinds of biosensors on a silica matrix. Enhancement of amine funtionality by capping with alkylsilane  相似文献   
33.
34.
Highly active NiFeOx electrocatalysts for the oxygen evolution reaction (OER) suffer gradual deactivation with time owing to the loss of Fe species from the active sites into solution during catalysis. The anodic deposition of a CeOx layer prevents the loss of such Fe species from the OER catalysts, achieving a highly stable performance. The CeOx layer does not affect the OER activity of the catalyst underneath but exhibits unique permselectivity, allowing the permeation of OH? and O2 through while preventing the diffusion of redox ions through the layer to function as a selective O2‐evolving electrode. The use of such a permselective protective layer provides a new strategy for improving the durability of electrocatalysts.  相似文献   
35.
A series of 1-isopropyl-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized and their bradycardic activities were evaluated in isolated guinea pig right atria. Structure-activity relationship studies revealed that the introduction of an appropriate substituent and its position on the 1,2,3,4-tetrahydroisoquinoline ring are essential for potent in vitro activity. Furthermore, the tether between the piperidyl moiety and the terminal aromatic ring is important for potent antihypertensive activity. Oral administration of 6-fluoro-1-isopropyl-2-{[1-(2-phenylethyl)piperidin-4-yl]carbonyl}-1,2,3,4-tetrahydroisoquinoline (3b) to spontaneously hypertensive rats (SHR) elicited antihypertensive effects without inducing reflex tachycardia, which is often caused by traditional L-type Ca2? channel blockers.  相似文献   
36.
Planar chiral [2]- and [3]rotaxanes constructed from pillar[5]arenes as wheels and pyridinium derivatives as axles were obtained in high yield using click reactions. The process of rotaxane formation was diastereoselective; the obtained [2]rotaxane was a racemic mixture consisting of (pS, pS, pS, pS, pS) and (pR, pR, pR, pR, pR) forms of the per-ethylated pillar[5]arene (C2) wheel, and other possible types of the [2]rotaxane did not form. Isolation of the enantiopure [2]rotaxanes with one axle through (pS, pS, pS, pS, pS)-C2 or (pR, pR, pR, pR, pR)-C2 wheels was accomplished. Furthermore, pillar[5]arene-based [3]rotaxane was successfully synthesized by attachment of two pseudo [2]rotaxanes onto a bifunctional linker. [3]Rotaxane formed in a 1:2:1 mixture with one axle threaded through two (pS, pS, pS, pS, pS)-C2, one (pS, pS, pS, pS, pS)-C2 and one (pR, pR, pR, pR, pR)-C2 (meso form), or two (pR, pR, pR, pR, pR)-C2 wheels. The [3]rotaxane enantiomers and the meso form were successfully isolated using appropriate chiral HPLC column chromatography. The procedure developed in this study is the starting point for the creation of pillar[5]arene-based interlocked molecules.  相似文献   
37.
Ionization dynamics of acetone and its dimer in supersonic jets is investigated by a combination of experimental and theoretical techniques, both of which have recently been developed. In experiments, the neutral and the cationic structures are explored by infrared predissociation spectroscopy with the vacuum-ultraviolet photoionization detection schemes. Reaction paths following the one-photon ionization of the acetone monomer and its dimer have been studied by the joint use of several theoretical methods including the ab initio molecular dynamics, the global reaction route mapping, the intrinsic reaction coordinate, and the artificial force induced reaction calculations. Upon one-photon ionization, the dimer isomerizes to the H-bonded form, in which the enol cation of acetone is bound to the neutral molecule, while this enolization is energetically forbidden in the acetone monomer. The enolization of the dimer cation occurs through a two-step proton-transfer from the methyl group of the ionized moiety, and is catalyzed by the neutral moiety within the dimer cation.  相似文献   
38.
39.
Exciton charge separation in photosynthetic reaction centers from purple bacteria (PbRC) and photosystem II (PSII) occurs exclusively along one of the two pseudo-symmetric branches (active branch) of pigment–protein complexes. The microscopic origin of unidirectional charge separation in photosynthesis remains controversial. Here we elucidate the essential factors leading to unidirectional charge separation in PbRC and PSII, using nonadiabatic quantum dynamics calculations in conjunction with time-dependent density functional theory (TDDFT) with the quantum mechanics/molecular mechanics/polarizable continuum model (QM/MM/PCM) method. This approach accounts for energetics, electronic coupling, and vibronic coupling of the pigment excited states under electrostatic interactions and polarization of whole protein environments. The calculated time constants of charge separation along the active branches of PbRC and PSII are similar to those observed in time-resolved spectroscopic experiments. In PbRC, Tyr-M210 near the accessary bacteriochlorophyll reduces the energy of the intermediate state and drastically accelerates charge separation overcoming the electron–hole interaction. Remarkably, even though both the active and inactive branches in PSII can accept excitons from light-harvesting complexes, charge separation in the inactive branch is prevented by a weak electronic coupling due to symmetry-breaking of the chlorophyll configurations. The exciton in the inactive branch in PSII can be transferred to the active branch via direct and indirect pathways. Subsequently, the ultrafast electron transfer to pheophytin in the active branch prevents exciton back transfer to the inactive branch, thereby achieving unidirectional charge separation.

Essential factors leading to unidirectional charge separation in photosynthetic reaction centers are clarified via nonadiabatic quantum dynamics calculations.  相似文献   
40.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying the fractionated and monodisperse bentonite particles (plate-like in their shape) in aqueous deionized suspension and in the presence of NaCl have been studied on a cover glass. The patterns coexisted with the broad ring of the hill accumulated with the particles and with the round hills are formed around the outside edges of the film and in the center, respectively, in the macroscopic scale. By the addition of NaCl the pattern shifts from the broad ring to the round hill in the center. The spoke-like cracks, which have been observed for the suspensions of the spherical particles so often hitherto, are not observed at all for the bentonite suspensions. The characteristic convection flow of the particles and the interactions among the particles and substrate are important for the macroscopic pattern formation. Wrinkled, branch-like and/or star-like fractal patterns are observed in the microscopic scale. These patterns are determined mainly by the electrostatic and polar interactions between the particles and/or between the particle and the substrate in the course of drying.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号