首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   803篇
  免费   50篇
  国内免费   3篇
化学   691篇
晶体学   8篇
力学   2篇
数学   81篇
物理学   74篇
  2023年   3篇
  2022年   13篇
  2021年   14篇
  2020年   25篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   27篇
  2015年   30篇
  2014年   30篇
  2013年   46篇
  2012年   63篇
  2011年   74篇
  2010年   34篇
  2009年   29篇
  2008年   57篇
  2007年   59篇
  2006年   49篇
  2005年   40篇
  2004年   45篇
  2003年   40篇
  2002年   30篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1991年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   8篇
  1981年   4篇
  1979年   6篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1969年   3篇
  1967年   6篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
21.
Dehydration reactions in water have been realized by a surfactant-type catalyst, dodecylbenzenesulfonic acid (DBSA). These reactions include dehydrative esterification, etherification, thioetherification, and dithioacetalization. In these reactions, DBSA and substrates form emulsion droplets whose interior is hydrophobic enough to exclude water molecules generated during the reactions. Detailed studies on the esterification revealed that the yields of esters were affected by temperature, amounts of DBSA used, and the substrates. Esters were obtained in high yields for highly hydrophobic substrates. On the basis of the difference in hydrophobicity of the substrates, unique selective esterification and etherification in water were attained. Furthermore, chemospecific, three-component reactions under DBSA-catalyzed conditions were also found to proceed smoothly. This work not only may lead to environmentally benign systems but also will provide a new aspect of organic chemistry in water.  相似文献   
22.
Efficient photocatalytic oxygenation of toluene occurs under visible light irradiation of 9-mesityl-10-methylacridinium (Acr+–Mes) in oxygen-saturated acetonitrile containing toluene and aqueous hydrochloric acid with a xenon lamp for 15 h. The oxygenated products, benzoic acid (70 %) and benzaldehyde (30 %), were formed after the photoirradiation. The photocatalytic reaction is initiated by intramolecular photoinduced electron transfer from the mesitylene moiety to the singlet excited state of the Acr+ moiety of Acr+–Mes, which affords the electron-transfer state, Acr?–Mes?+. The Mes?+ moiety can oxidize chloride ion (Cl?) by electron transfer to produce chlorine radical (Cl?), whereas the Acr? moiety can reduce O2 to O 2 ?? . The Cl? radical produced abstracts a hydrogen from toluene to afford benzyl radical in competition with the bimolecular radical coupling of Cl?. The benzyl radical reacts with O2 rapidly to afford the peroxyl radical, leading to the oxygenated product, benzaldehyde. Benzaldehyde is readily further photooxygenated to yield benzoic acid with Acr?–Mes?+. In the case of an aromatic compound with electron-donating substituents, 1,3,5-trimethoxybenzene, photocatalytic chlorination occurred efficiently under the same photoirradiation conditions to yield a monochloro-substituted compound, 2,4,6-trimethoxychlorobenzene.  相似文献   
23.
Multiple internal reflection infrared spectroscopy was applied to in situ investigations of surface intermediates of photocatalytic reactions on nanocrystalline TiO(2) films in contact with aqueous solutions. UV irradiation in the presence of dissolved O(2) caused the appearance of new bands peaked at 943, 838, and 1250-1120 cm(-)(1) together with intensity changes in other bands. Investigations of influences of the solution pH, the presence or absence of hole and electron scavengers, and isotopic H(2)O --> D(2)O exchange on the spectral changes have revealed that the primary step of photocatalytic O(2) reduction is the formation of the surface peroxo species, Ti(O(2)), giving the 943 cm(-)(1) band, probably with the surface superoxo species, TiOO., as a precursor, in neutral and acidic solutions. The surface peroxo species is then transformed to the surface hydroperoxo, TiOOH, giving the 838 and 1250-1120 cm(-)(1) bands, by protonation in the dark. This is, to our knowledge, the first direct in situ spectroscopic detection of primary intermediates for the photocatalytic O(2) reduction in aqueous solutions. On the basis of the assignment, a possible reaction scheme for various processes of the photocatalytic O(2) reduction is proposed, which is in harmony with other spectral changes induced by the UV irradiation.  相似文献   
24.
Second-harmonic alternating current voltammetry has been used to determine one-electron reduction potentials of 15 diarylcarbenium ions and 5 structurally analogous quinone methides, which have been employed as reference electrophiles for the development of nucleophilicity scales. A linear correlation (r(2) = 0.993) between the empirical electrophilicity parameters E and the reduction potentials in acetonitrile (E = 14.091E degrees (red) - 0.279) covering a range of 1.64 V (or 158 kJ mol(-)(1)) has been observed. For a large number of nucleophiles, it has been demonstrated that the observed activation free energies of the electrophile-nucleophile combinations are 61-195 kJ mol(-)(1) smaller than the free energy change of electron transfer from nucleophile to electrophile, which definitely excludes outer-sphere electron transfer occurring during these reactions.  相似文献   
25.
[reaction: see text] A newly developed strategy for construction of eight-membered carbocycles via [6 + 2] annulation that involves the combination of beta-alkenoyl acylsilanes and a vinyllithium derivative is described. A unique feature of this annulative approach is that it enables in one operation and a stereoselective manner construction of eight-membered ring systems containing useful functionalities for further synthetic elaboration from readily available six- and two-carbon components.  相似文献   
26.
Depolymerization of an engineering plastic, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), was accomplished by using 2,6-dimethylphenol (DMP) under oxidative conditions. The addition of an excess amount of DMP to a solution of PPO in the presence of a CuCl/pyridine catalyst yielded oligomeric products. When PPO (M(n)=1.0x10(4), M(w)/M(n)=1.2) was allowed to react with a sufficient amount of DMP, the molecular weight of the product decreased to M(n)=4.9x10(2) (M(w)/M(n)=1.5). By a prolonged reaction with the oxidant, the oligomeric product was repolymerized to produce PPO essentially identical to the starting material, making the oligomer useful as a reusable resource. During the depolymerization reaction, an intermediate phenoxyl radical was observed by ESR spectroscopy. Kinetic analysis showed that the rate of the oxidation of PPO was about 10 times higher than that of DMP. These results show that a monomeric phenoxyl radical attacks the polymeric phenoxyl to induce the redistribution via a quinone ketal intermediate, leading to the substantial decrease in the molecular weight of PPO, which is much faster than the chain growth.  相似文献   
27.
Novel organic–inorganic hybrid nanoparticles consisting of polymer–hydrogel nanoparticles (nanogels) and iron oxide were developed for potential biomedical applications. Hybrid nanoparticles were prepared by a simple procedure using polysaccharide nanogels as a reactive site for iron oxide formation. The hybrid nanoparticles have a narrow size distribution with a diameter of approximately 30 nm and show high colloidal stability. These nanohybrid particles could be used as a contrast medium for magnetic resonance imaging or for magnetic hyperthermia therapy.  相似文献   
28.
Porphyrin derivatives bearing 2,6-di-tert-butylphenol substituents at their 5,15-positions undergo reversible photoredox switching between porphyrin and porphodimethene states as revealed by UV-vis spectroscopy, fluorescence spectroscopy, and X-ray single-crystal analyses. Photoredox interconversion is accompanied by substantial variations in electronic absorption and fluorescence emission spectra and a change of conformation of the tetrapyrrole macrocycle from planar to roof-shaped. Oxidation proceeds only under photoillumination of a dianionic state prepared through deprotonation using fluoride anions. Conversely, photoreduction occurs in the presence of a sacrificial electron donor. Transient absorption spectroscopy and electron spin resonance spectroscopy were applied to investigate the processes in photochemical reaction, and radical intermediates were characterized. That is, photooxidation initially results in a phenol-substituent-centered radical, while the reduction process occurs via a delocalized radical state involving both the macrocycle and 5,15-substituents. Forward and reverse photochemical processes are governed by different chemical mechanisms, giving the important benefit that conversion reactions are completely isolated, leading to better separation of the end states. Furthermore, energy diagrams based on electrochemical analyses (cyclic voltammetry) were used to account for the processes occurring during the photochemical reactions. Our molecular design indicates a simple and versatile method for producing photoredox macrocyclic compounds, which should lead to a new class of advanced functional materials suitable for application in molecular devices and machines.  相似文献   
29.
Two- or three-component aza Diels-Alder reactions of Danishefsky's diene with imines or aldehydes and amines in water took place smoothly under neutral conditions in the presence of a catalytic amount of an alkaline salt such as sodium triflate to afford dihydro-4-pyridones in high yields.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号