首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   3篇
  国内免费   1篇
化学   46篇
力学   2篇
数学   9篇
物理学   20篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
61.
Four novel dicyanamide-containing hybrid organic–inorganic ABX3 structures are reported, and the thermal behaviour of a series of nine perovskite and non-perovskite [AB(N(CN)2)3] (A = (C3H7)4N, (C4H9)4N, (C5H11)4N; B = Co, Fe, Mn) is analyzed. Structure–property relationships are investigated by varying both A-site organic and B-site transition metal cations. In particular, increasing the size of the A-site cation from (C3H7)4N → (C4H9)4N → (C5H11)4N was observed to result in a decrease in Tm through an increase in ΔSf. Consistent trends in Tm with metal replacement are observed with each A-site cation, with Co < Fe < Mn. The majority of the melts formed were found to recrystallise partially upon cooling, though glasses could be formed through a small degree of organic linker decomposition. Total scattering methods are used to provide a greater understanding of the melting mechanism.

Increasing the size of the A-site cation from (C3H7)4N → (C4H9)4N → (C5H11)4N in hybrid organic–inorganic ABX3 structures was observed to result in a decrease in Tm, through an increase in ΔSf.  相似文献   
62.
Pyridoxal 5′-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5′-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

The neutron structure of pyridoxal 5′-phosphate-dependent enzyme aspartate aminotransferase with pyridoxamine 5′-phosphate (PMP) reveals a low-barrier hydrogen bond between the amino groups of PMP and catalytic Lys258, preorganizing the active site for catalysis  相似文献   
63.
Our lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β-galactosidase (β-gal). We investigated two molecular architectures to create agents that detect β-gal activity by modulating the coordination of water to GdIII. The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6-C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β-gal.  相似文献   
64.
Here, we propose the combination of glassy or crystalline metal-organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF-glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.  相似文献   
65.
66.
铌酸锶钡薄膜的微结构与电光性能的研究   总被引:3,自引:1,他引:2  
叶辉  Melanie M T Ho  Mak CL 《光学学报》2002,22(10):170-1175
本文叙述了使用溶胶凝胶法在MgO(0 0 1)的衬底上制备铌酸锶钡薄膜的过程 ,膜层厚度可达 5 μm。通过X射线衍射、摇摆曲线、扫描、拉曼散射光谱等方法研究了薄膜的微结构性能 ,实验发现 ,铌酸锶钡薄膜具有了较好的 (0 0 1)方向的优先取向性能 ,并且随着薄膜厚度的增加 ,其晶体取向性也会随之不断改进。熔石英的透明衬底上生长的SBN薄膜具有较大的电致双折射效应 ,其有效电光系数能够高达 6 6 2× 10 -11m/V。  相似文献   
67.
Neutron crystallography was used to directly locate two protons before and after a pH‐induced two‐proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV‐1 protease. The two‐proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low‐pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.  相似文献   
68.
A fast and efficient mechanosynthesis (ball-milling) method of preparing amorphous zeolitic imidazolate frameworks (ZIFs) from different starting materials is discussed. Using X-ray total scattering, N(2) sorption analysis, and gas pycnometry, these frameworks are indistinguishable from one another and from temperature-amorphized ZIFs. Gas sorption analysis also confirms that they are nonporous once formed, in contrast to activated ZIF-4, which displays interesting gate-opening behavior. Nanoparticles of a prototypical nanoporous substituted ZIF, ZIF-8, were also prepared and shown to undergo amorphization.  相似文献   
69.
A model of the formation, detachment, and rise of a bubble from a submerged orifice is derived, based upon a study using a modified form of the Rayleigh–Plesset equation. Similar models have previously been proposed by Oguz and Prosperetti (1), Avramidis and Jiang (2), and also Chakraborty and Tuteja (3). We seek to re-examine these models and implement a number of additional physical features. In particular, we demonstrate the relative importance of the surface dilatational viscosity of surfactant added to the liquid in the growth and detachment of the bubble from the orifice. It is found that “large” surface dilatational viscosities significantly increase the time to detachment of the bubble. In addition, through a drastic reduction in the rate of radial expansion of the bubble in the early stages of development (given an initial condition on the radial velocity for “fast” bubble growth), the rise velocity of the bubble centroid at this time is greater with a large surface dilatational viscosity than when this property is neglected.  相似文献   
70.
The superionic properties of the compounds RbAg4I5, KAg4I5 and KCu4I5 have been investigated by powder neutron diffraction and complex impedance spectroscopy. RbAg4I5 and KAg4I5 have room-temperature ionic conductivities of σ=0.21(6) and 0.08(5) Ω−1 cm−1, respectively, which increase gradually on increasing temperature. KCu4I5 is only stable in the temperature range between 515(5) K and its melting point of 605 K, and its ionic conductivity is σ=0.61(8) Ω−1 cm−1, at T=540 K. At lower temperatures, KCu4I5 disproportionates into KI+4CuI and the ionic conductivity falls by over three orders of magnitude. Least-squares refinements of the powder neutron diffraction data for RbAg4I5 at ambient temperature confirm the reported structure (space group P4132, Z=4, a=11.23934(3) Å), though with some differences in the preferred locations of the mobile Ag+. KAg4I5 and KCu4I5 are found to adopt the same basic structure as RbAg4I5, with the I− forming a β-Mn-type sublattice, with the K+ located in a distorted octahedral environment and the Ag+(Cu+) predominantly distributed over two sites which are tetrahedrally co-ordinated to I. The implications for the conduction mechanism within these compounds are discussed, using a novel maximum entropy difference Fourier technique to map the distribution of the Ag+(Cu+) within the unit cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号