首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   33篇
  国内免费   3篇
化学   666篇
晶体学   8篇
力学   11篇
数学   62篇
物理学   182篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   12篇
  2018年   7篇
  2017年   4篇
  2016年   26篇
  2015年   17篇
  2014年   26篇
  2013年   43篇
  2012年   56篇
  2011年   68篇
  2010年   32篇
  2009年   42篇
  2008年   80篇
  2007年   71篇
  2006年   42篇
  2005年   43篇
  2004年   47篇
  2003年   56篇
  2002年   54篇
  2001年   17篇
  2000年   20篇
  1999年   10篇
  1998年   10篇
  1997年   11篇
  1996年   11篇
  1995年   5篇
  1994年   5篇
  1993年   14篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   9篇
  1975年   8篇
  1974年   3篇
  1973年   6篇
  1969年   2篇
排序方式: 共有929条查询结果,搜索用时 609 毫秒
41.
To elucidate the reaction mechanism of radiation-induced polymerization of the styrene—silica gel system, the influence of H2O as adsorbed water and inhibitor of cationic polymerization was investigated by two methods. Monomer conversion decreased as H2O increased. In general, percent grafting decreased as H2O increased, but the presence of a small amount of H2O increased the percent grafting. Grafting at 16 Mrad has a maximum value at a water content of about 0.2%. This seems to be due to two effects of H2O: percent grafting increases due to restraint of cationic polymerization by H2O, but the percent grafting decreases due to adsorption water which interrupts the contact of styrene with silica gel. In GPC spectra, the low molecular weight peaks of both graft polymers and homopolymers decreased when H2O was added. The GPC results suggest that the number of positive holes which initiate cationic polymerization is very large.  相似文献   
42.
Mesoporous titanium dioxide nanosized powder with high specific surface area and anatase wall was synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting materials were characterized by XRD, nitrogen adsorption, FESEM, TEM, and FT-IR spectroscopy. The as-synthesized mesoporous TiO2 nanoparticles have mean diameter of 17.6 nm with mean pore size of 2.1 nm. The specific surface area of the as-synthesized mesoporous nanosized TiO2 exceeded 430 m2/g and that of the samples after calcination at 600 degrees C still have 221.9 m2/g. The mesoporous TiO2 nanoparticles show significant activities on the oxidation of Rhodamine B (RB). The large surface area, small crystalline size, and well-crystallized anatase mesostructure can explain the high photocatalytic activity of mesoporous TiO2 nanoparticles calcined at 400 degrees C.  相似文献   
43.
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002  相似文献   
44.
The mechanism for the activation of the sigma bonds, the O-H of H2O, C-H of CH4, and the H-H of H2, and the pi bonds, the C[triple bond]C of C2H2, C=C of C2H4, and the C=O of HCHO, at the Pd=X (X = Sn, Si, C) bonds of the model complexes (H2PC2H4PH2)Pd=XH2 5 has been theoretically investigated using a density functional method (B3LYP). The reaction is significantly affected by the electronic nature of the Pd=X bond, and the mechanism is changed depending on the atom X. The activation of the O-H bond with the lone pair electron is heterolytic at the Pd=X (X = Sn, Si) bonds, while it is homolytic at the Pd=C bond. The C-H and H-H bonds without the lone pair electron are also heterolytically activated at the Pd=X bonds independent of the atom X, where the hydrogen is extracted as a proton by the Pd atom in the case of X = Sn, Si and by the C atom in the case of X=C because the nucleophile is switched between the Pd and X atoms depending on the atom X. In contrast, the pi bond activation of C[triple bond]C and C=C at the Pd=Sn bond proceeds homolytically, and is accompanied by the rotation of the (H2PC2H4PH2)Pd group around the Pd-Sn axis to successfully complete the reaction by both the electron donation from the pi orbital to Sn p orbital and the back-donation from the Pd dpi orbital to the pi orbital. On the other hand, the activation of the C=O pi bond with the lone pair electron at the Pd=Sn bond has two reaction pathways: one is homolytic with the rotation of the (H2PC2H4PH2)Pd group and the other is heterolytic without the rotation. The role of the ligands controlling the activation mechanism, which is heterolytic or homolytic, is discussed.  相似文献   
45.
A series of sulfido-bridged tungsten-ruthenium dinuclear complexes Cp*W(mu-S)(3)RuX(PPh(3))(2) (4a; X = Cl, 4b; X = H), Cp*W(O)(mu-S)(2)RuX(PPh(3))(2) (5a; X = Cl, 5b; X = H), and Cp*W(NPh)(mu-S)(2)RuX(PPh(3))(2) (6a; X = Cl, 6b; X = H) have been synthesized by the reactions of (PPh(4))[Cp*W(S)(3)] (1), (PPh(4))[Cp*W(O)(S)(2)] (2), and (PPh(4))[Cp*W(NPh)(S)(2)] (3), with RuClX(PPh(3))(3) (X = Cl, H). The heterolytic cleavage of H(2) was found to proceed at room temperature upon treating 5a and 6a with NaBAr(F)(4) (Ar(F) = 3, 5-C(6)H(3)(CF(3))(2)) under atmospheric pressure of H(2), which gave rise to [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (7a) and [Cp*W(NHPh)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (8), respectively. When Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b) was treated with a Br?nstead acid, [H(OEt(2))(2)](BAr(F)(4)) or HOTf, protonation occurred exclusively at the terminal oxide to give [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](X) (7a; X = BAr(F)(4), 7b; X = OTf), while the hydride remained intact. The analogous reaction of Cp+W(mu-S)(3)Ru(PPh(3))(2)H (4b) led to immediate evolution of H(2). Selective deprotonation of the hydroxyl group of 7a or 7b was induced by NEt(3) and 4b, generating Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b). Evolution of H(2) was also observed for the reactions of 7a or 7b with CH(3)CN to give [Cp*W(O)(mu-S)(2)Ru(CH(3)CN)(PPh(3))(2)](X) (11a; X = BAr(F)(4), 11b; X = OTf). We examined the H/D exchange reactions of 4b, 5b, and 7a with D(2) and CH(3)OD, and found that facile H/D scrambling over the W-OH and Ru-H sites occurred for 7a. Based on these experimental results, the mechanism of the heterolytic H(2) activation and the reverse H(2) evolution reactions are discussed.  相似文献   
46.
47.
Mono- and di-nuclear tricarbonyl Re(I) tetraazaporphyrin complexes ( Re1TAP and Re2TAP ) are investigated and compared with Re(I) phthalocyanine complexes ( Re1Pc and Re2Pc ). Although Re2Pc is unstable in polar solvents, and easily undergoes demetallation reaction, the coordination of the TAP ligand significantly improves the tolerance toward polar solvents, affording more stability to Re2TAP . Additionally, the incorporation of [Re(CO)3]+ unit(s) and the TAP ligand results in remarkable positive shifts in both oxidation and reduction potentials. Consequently, the more positive oxidation potentials of the ReTAP complexes significantly increase the tolerance toward oxidation, while the reduction potential indicates that Re2TAP is suitable for a soluble electron acceptor. In contrast to Re1Pc and Re2Pc , Re1TAP and Re2TAP show unique broad Q bands, which can be attributed to the admixture of the π-π* and metal-to-ligand charge transfer characters, owing to the lowered π orbital energy in the TAP complexes. This study is useful for controlling electronic properties and realizing high stability in Pc analogues.  相似文献   
48.
  相似文献   
49.
We study the QCD phase structure at high temperature and density adopting a histogram method. Because the quark determinant is complex at finite density, the Monte-Carlo method cannot be applied directly. We use a reweighting method and try to solve the problems which arise in the reweighting method, i.e. the sign problem and the overlap problem. We discuss the chemical potential dependence of the probability distribution function in the heavy quark mass region and examine the applicability of the approach in the light quark region.  相似文献   
50.
We show direct evidence that underwater shock wave enables us to bond multithin plates with flat, parallel, and high-strength interfaces, which are key requirements for functionally graded material (also called graded density impactor). This phenomenon is ascribed to the super short duration of the high-speed underwater shock wave, reducing the surface tension, diffusion, evaporation, deposition, and viscous flow of matter. Thin magnesium, aluminum, titanium, copper, and molybdenum foils were welded together and designed with the increase in density. Experimental evidence and numerical simulation show that well bonding between the multilayer structures. Microstructure examinations reveal that the dominant interfacial form shifts from waviness to linearity. Graded density impactor with multilayer structure is proved that can produce quasi-isentropic compression in two-stage gas gun experiment with a designed pressure loading profile, which suggests a feasible method to simulate the conditions we want to study that were previously inaccessible in a precisely controlled laboratory environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号