首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   897篇
  免费   26篇
  国内免费   2篇
化学   761篇
晶体学   9篇
力学   6篇
数学   30篇
物理学   119篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   24篇
  2019年   13篇
  2018年   11篇
  2017年   7篇
  2016年   18篇
  2015年   10篇
  2014年   19篇
  2013年   44篇
  2012年   55篇
  2011年   50篇
  2010年   30篇
  2009年   30篇
  2008年   59篇
  2007年   53篇
  2006年   57篇
  2005年   54篇
  2004年   56篇
  2003年   54篇
  2002年   34篇
  2001年   15篇
  2000年   19篇
  1999年   14篇
  1998年   8篇
  1997年   14篇
  1996年   10篇
  1995年   4篇
  1994年   9篇
  1993年   4篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1985年   8篇
  1984年   10篇
  1982年   6篇
  1981年   8篇
  1980年   7篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1973年   4篇
  1969年   4篇
排序方式: 共有925条查询结果,搜索用时 15 毫秒
41.
Chirality exchange benzannulation of optically active (1S)-aryl(aryl')-2,2-dichlorocyclopropylmethanols (>99% ee) using TiCl4 successfully proceeded to give axially chiral (M)-alpha-arylnaphthalenes with excellent levels of stereo induction (>99% ee). This unique transformation involves the single-step chirality exchange from sp3 central chirality to axial chirality, that is, a type of excellent memory effect.  相似文献   
42.
Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures. Results show that a novel Cu–In2O3 structured oxide can show a remarkably higher CO2 splitting rate than ever reported. Various analyses revealed that RWGS-CL on Cu–In2O3 is derived from redox between Cu–In2O3 and Cu–In alloy. Key factors for high CO2 splitting rate were fast migration of oxide ions in the alloy and the preferential oxidation of the interface of alloy–In2O3 in the bulk of the particles. The findings reported herein can open up new avenues to achieve effective CO2 conversion at lower temperatures.

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.  相似文献   
43.
Silica gels doped with Cu2+ ions were prepared from the (3-aminopropyl) trimethoxysilane (APTMOS)/tetraethoxysilane (TEOS) systems. Sols showed a broad absorption peak at 640 nm, suggesting 3–5 coordination of the aminopropyl groups to Cu2+. For gels prepared from APTMOS and dried at room temperature, the 640 nm peak decreased and a red-shifted absorption appeared below 400 nm within a few months. The luminescence spectra of the xerogels showed emission bands at 430–470 and 510 nm. The former and latter bands are ascribed to Cu+ monomer and dimer emissions, respectively. These results indicate that Cu2+ ions are reduced to Cu+. When xerogels were prepared from APTMOS/TEOS = 1 (vol/vol), the color of xerogels was blue with an absorption peak at around 670 nm, indicating no reduction of Cu2+ ions.  相似文献   
44.
The enantioselective synthesis of aza[6] and [7]helicene-like molecules have been achieved by the cationic rhodium(I)/axially chiral biaryl bisphosphine complex-catalyzed intramolecular [2+2+2] cycloaddition of cyanodiynes. This protocol was successfully applied to the diastereo- and enantioselective synthesis of an S-shaped double aza[6]helicene-like molecule with a high ee value of 89 %. Although no epimerization and racemization were observed in the double carbo[6]helicene-like molecule at 80 °C, epimerization and racemization of the double aza[6]helicene-like molecule proceeded at 80 °C. This double aza[6]helicene-like molecule showed good fluorescent quantum yields and chiroptical responses under both neutral and acidic conditions.  相似文献   
45.
A series of amino-acid-based amphiphilic diblock copolymer nano-objects having different morphologies were developed by reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization of styrene (St) in methanol. This was mediated by six different hydrophilic poly(N-acryloyl amino acid) macro-chain transfer agents (CTAs), including three carboxylic-acid-containing ones, poly(N-acryloyl-l -proline) (PAProOH), poly(N-acryloyl-4-trans-hydroxy-l -proline) (PAHypOH), and poly(N-acryloyl-l -threonine) (PAThrOH) prepared by RAFT polymerization, and their methyl ester forms, PAProOMe, PAHypOMe, and PAThrOMe. The effects of polymerization conditions on RAFT dispersion polymerization of St using a dithiocarbamate-terminated PAProOH was investigated. A systematic study of the effects of monomer conversion and concentration afforded the formation of various morphologies (i.e., spheres, worms, and vesicles). The effects of hydrogen-bonding and ionic interactions of the macro-CTAs on the assembled structures of the nano-objects were evaluated using six different macro-CTAs. Transforming the products from methanol to water via dialysis produced amino-acid-based block copolymer nano-objects, exhibiting pH-responsive morphological change, in aqueous solution.  相似文献   
46.
47.
Photons propagating in strong magnetic fields are subject to a phenomenon called the “vacuum birefringence” where refractive indices of two physical modes both deviate from unity and are different from each other. We compute the vacuum polarization tensor of a photon in a static and homogeneous magnetic field by utilizing Schwinger’s proper-time method, and obtain a series representation as a result of double integrals analytically performed with respect to proper-time variables. The outcome is expressed in terms of an infinite sum of known functions which is plausibly interpreted as summation over all the Landau levels of fermions. Each contribution from infinitely many Landau levels yields a kinematical condition above which the contribution has an imaginary part. This indicates decay of a sufficiently energetic photon into a fermion–antifermion pair with corresponding Landau level indices. Since we do not resort to any approximation, our result is applicable to the calculation of refractive indices in the whole kinematical region of a photon momentum and in any magnitude of the external magnetic field.  相似文献   
48.
Four strains of biphenyl-degrading bacteria were isolated from a sewage and identified from the Rhodococcus genus (SK-1, SK-3, and SK-4) and Aquamicrobium genus (SK-2) by 16S rRNA sequence. Among these strains, strain SK-2 was most suitable for biphenyl degradation. When 0.65, 1.3, 2.6, or 3.9 mM of biphenyl was used, the biphenyl was completely degraded within 24 and 96 h of culture, respectively. However, in the case of 6.5 and 9.75 mM of biphenyl, the biphenyl degradation yields were about 80 % and 46.7 % after 120 h of culture, respectively. The isolated strains could degrade a broad spectrum of aromatic compounds including high-chlorinated polychlorinated biphenyl (PCB) congeners in the presence of biphenyl. In addition, strain SK-2 could utilize PCB congeners containing one to six chlorine substituents such as 2,2′,4,4′,5,5′-hexachlorobiphenyl. The PCB utilization rate by the strain SK-2 was increased compared to that of other PCB congener-utilizing bacteria. The four isolates metabolized 4-chlorobiphenyl to 4-chlorobenzoic acid and 2-hydroxy-6-oxo-6-(4′-chlorophenyl)-hexa-2,4-dienoic acid. These results suggest the isolated strains might be good candidates for the bioremediation of PCB-contaminated soil, especially high-saline soils.  相似文献   
49.
50.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号