首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   10篇
化学   268篇
晶体学   4篇
物理学   24篇
  2023年   7篇
  2022年   6篇
  2021年   4篇
  2020年   9篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   16篇
  2012年   21篇
  2011年   22篇
  2010年   20篇
  2009年   8篇
  2008年   15篇
  2007年   15篇
  2006年   24篇
  2005年   17篇
  2004年   12篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
排序方式: 共有296条查询结果,搜索用时 8 毫秒
71.
72.
73.
The absorption spectra of copper phthalocyanine (CuPc) 1,2-dichloroethane (DCE) solutions containing trifluoroacetic acid (TFAA) shows that the number of protons coordinating to the CuPc molecule was 1 and 2 for the first and second proton adducts, respectively, which indicates the formations of CuPcH(+) and CuPcH(2)(2+). This CuPc molecule may act as a catalyst to dissociate TFAA into trifluoroacetate anion (A(-)) and H(+) and form the proton adducts. The electrical conductivity dependence of the solution on CuPc concentration also supports this mechanism. A dense film of CuPc was deposited on an indium tin oxide cathode plate by electrophoresis of the solution. Similar dense films of a wide variety of phthalocyanines (MPc; M = Cu, H(2), Fe, Ni, Zn, Pb, VO) were also deposited using this method. Similar films of CuPc were also formed using dichloromethane (DCM) and 1,1,1-trichloroethane (TCE) in place of DCE. Depositions are ascribed to the migration of positively charged monomers (i.e., protonated MPc). Scanning electron microscopy revealed that these films are composed of fibrous crystallites, size of which was found to increase with the electrophoresis time, the strength of the applied electrical field and the concentration of CuPc in the bath. The influence of the dielectric constant of the organic solvent on the film growth is discussed.  相似文献   
74.
The probable structure of the inclusion complex of beta-cyclodextrin (beta-CD) and (-)-epigallocatechin gallate (EGCg) in D2O was investigated using several NMR techniques. EGCg formed a 1:1 complex with beta-CD, in which the A ring and a portion of the C ring of EGCg were included at the head of the phenolic hydroxyl group attached to C7 of EGCg in the beta-CD cavity from the wide secondary hydroxyl group side. In the 1:1 complex with beta-CD, EGCg maintained the conformation in which the B and B' rings of EGCg took pseudoequatorial and pseudoaxial positions with respect to the C ring, respectively. The structure of the inclusion complexes of beta-CD and EGCg obtained from NMR experiments supported those determined from AM1 semiempirical SCF MO calculations well.  相似文献   
75.
The redox behavior of kinetically stabilized dipnictenes, BbtE=EBbt [E = P, Sb, Bi; Bbt = 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl], was systematically disclosed using cyclic voltammetry and theoretical calculations. It was found that they showed reversible one-electron redox couples in the reduction region. The anion radical species of the Bbt-substituted diphosphene and distibene were successfully synthesized by the reduction of the corresponding neutral dipnictenes (BbtP=PBbt and BbtSb=SbBbt). Their structures were reasonably characterized by ESR, UV-vis, and Raman spectroscopy, and the distibene anion radical was structurally characterized by X-ray crystallographic analysis.  相似文献   
76.
77.
Free-radical polymerization of vinyl esters including vinyl propionate (VPr), vinyl isobutylate (ViBu), vinyl 2,2-dimethylbutylate (VDMB), vinyl 2,2-dimethylvalerate (VDMV), vinyl 2,2-bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) was carried out using fluoroalcohols as solvents, and the tacticity of the obtained polymers was determined by NMR analysis of the produced poly(vinyl alcohol) (PVA). The polymerization of VPr, ViBu, VDMB, and VDMV, which are bulkier than VAc, in fluoroalcohols afforded polymers rich in heterotacticity (up to mr = 61%) similar to that of vinyl pivalate (VPi) whereas VAc is known to give a syndiotactic polymer under the reaction conditions used here. The polymerization of VF6Pi, which is the bulkiest among the monomers used in this study, gave a polymer rich in syndiotacticity in bulk and in fluoroalcohols regardless of the structure of the solvents. On the other hand, the polymerization of VBz in fluoroalcohols gave polymers with a higher isotacticity (up to mm = 33%) than bulk polymerization. Thus the monomer structure strongly affected the stereochemistry of the free-radical polymerization of vinyl esters in fluoroalcohols. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2677–2683, 1999  相似文献   
78.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号