首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   40篇
  国内免费   1篇
化学   382篇
力学   3篇
数学   6篇
物理学   65篇
  2023年   5篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   19篇
  2015年   15篇
  2014年   11篇
  2013年   21篇
  2012年   29篇
  2011年   35篇
  2010年   16篇
  2009年   10篇
  2008年   27篇
  2007年   23篇
  2006年   26篇
  2005年   33篇
  2004年   29篇
  2003年   17篇
  2002年   21篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1975年   4篇
  1974年   1篇
  1973年   4篇
排序方式: 共有456条查询结果,搜索用时 359 毫秒
171.
A proton–electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi-step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric-like arrangement.  相似文献   
172.
The reaction of tert-butylbis(trimethylsilyl)silyl potassium with pivaloyl chloride gave pivaloyl[tert-butylbis(trimethylsilyl)]silane (1) in 89% yield. The cothermolysis of 1 with tert-butylacetylene at 140 °C for 24 h produced the mixture consisting of cis- and trans-1,2,3-tri(tert-butyl)-2-(trimethylsiloxy)-1-(trimethylsilyl)-1-silacyclobut-3-ene (cis-2 and trans-2) in a ratio of 0.7: 1, in 88% combined yield. The thermolysis of the mixture, cis-2 and trans-2, at 250 °C for 24 h proceeded to give trans-1,2,4-tri(tert-butyl)-1-(trimethylsiloxy)-2-(trimethylsilyl)-1-silacyclobut-3-ene (4) as a single product in 96% yield. Similar treatment of cis- and trans-2 at 190 °C for 15 h afforded silylcyclopropene 3 quantitatively, which underwent further isomerization at 250 °C to give trans-1-silacyclobut-3-ene 4 in quantitative yield.  相似文献   
173.
We found that addition of N,N-dimethylformamide (DMF) induces phase separation of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water mixtures. The phase diagram of a DMF-HFIP-water ternary system at 298 K showed that phase separation occurs in a closed-loop area in the water-rich mole fraction range of x(H(2)O) > ~0.4. To clarify the mechanism of DMF-induced phase separation of DMF-HFIP-water mixtures at the molecular level, small-angle neutron scattering (SANS) and (1)H and (13)C NMR measurements were conducted on the mixtures with varying DMF concentrations along a volume ratio of HFIP to water of 1?:?1 (x(S)(HFIP) = 0.147). Additionally, the solvation structure of DMF in water and HFIP-water mixtures was elucidated by molecular dynamics (MD) simulations. The SANS results revealed that the inherent heterogeneity of HFIP-water mixtures is increased with increasing DMF concentration toward the lower phase separation concentration, but decreased when the DMF concentration further increased beyond the upper phase separation one. (1)H and (13)C NMR measurements and MD simulations suggested that preferential solvation of the hydrophobic moiety of DMF by HFIP is the main driver of the phase behaviour of the DMF-HFIP-water system.  相似文献   
174.
The first Ruddlesden-Popper type layered cobalt oxyfluoride, Sr(2)CoO(3)F, has been synthesized under a pressure of 6 GPa at 1700 °C and shown to adopt a K(2)NiF(4)-type structure with distorted square pyramidal coordination around Co and with O/F disorder at the apical sites.  相似文献   
175.
The pterin‐coordinated ruthenium complex, [RuII(dmdmp)(tpa)]+ ( 1 ) (Hdmdmp=N,N‐dimethyl‐6,7‐dimethylpterin, tpa=tris(2‐pyridylmethyl)amine), undergoes photochromic isomerization efficiently. The isomeric complex ( 2 ) was fully characterized to reveal an apparent 180° pseudorotation of the pterin ligand. Photoirradiation to the solution of 1 in acetone with incident light at 460 nm resulted in dissociation of one pyridylmethyl arm of the tpa ligand from the RuII center to give an intermediate complex, [Ru(dmdmp)(tpa)(acetone)]2+ ( I ), accompanied by structural change and the coordination of a solvent molecule to occupy the vacant site. The quantum yield (?) of this photoreaction was determined to be 0.87 %. The subsequent thermal process from intermediate I affords an isomeric complex 2 , as a result of the rotation of the dmdmp2? ligand and the recoordination of the pyridyl group through structural change. The thermal process obeyed first‐order kinetics, and the rate constant at 298 K was determined to be 5.83×10?5 s?1. The activation parameters were determined to be ΔH=81.8 kJ mol?1 and ΔS=?49.8 J mol?1 K?1. The negative ΔS value indicates that this reaction involves a seven‐coordinate complex in the transition state (i.e., an interchange associative mechanism). The most unique point of this reaction is that the recoordination of the photodissociated pyridylmethyl group occurs only from the direction to give isomer 2 , without going back to starting complex 1 , and thus the reaction proceeds with 100 % conversion efficiency. Upon heating a solution of 2 in acetonitrile, isomer 2 turned back into starting complex 1 . The backward reaction is highly dependent on the solvent: isomer 2 is quite stable and hard to return to 1 in acetone; however, 2 was converted to 1 smoothly by heating in acetonitrile. The activation parameters for the first‐order process in acetonitrile were determined to be ΔH=59.2 kJ mol?1 and ΔS=?147.4 kJ mol?1 K?1. The largely negative ΔS value suggests the involvement of a seven‐coordinate species with the strongly coordinated acetonitrile molecule in the transition state. Thus, the strength of the coordination of the solvent molecule to the RuII center is a determinant factor in the photoisomerization of the RuII–pterin complex.  相似文献   
176.
Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.  相似文献   
177.
Sun Y  Wang C  Huang Q  Guo Y  Chu L  Arai M  Yamaura K 《Inorganic chemistry》2012,51(13):7232-7236
The antiperovskite Mn(3)ZnN is studied by neutron diffraction at temperatures between 50 and 295 K. Mn(3)ZnN crystallizes to form a cubic structure at room temperature (C1 phase). Upon cooling, another cubic structure (C2 phase) appears at around 177 K. Interestingly, the C2 phase disappears below 140 K. The maximum mass concentration of the C2 phase is approximately 85% (at 160 K). The coexistence of C1 and C2 phase in the temperature interval of 140-177 K implies that phase separation occurs. Although the C1 and C2 phases share their composition and lattice symmetry, the C2 phase has a slightly larger lattice parameter (Δa ≈ 0.53%) and a different magnetic structure. The C2 phase is further investigated by neutron diffraction under high-pressure conditions (up to 270 MPa). The results show that the unusual appearance and disappearance of the C2 phase is accompanied by magnetic ordering. Mn(3)ZnN is thus a valuable subject for study of the magneto-lattice effect and phase separation behavior because this is rarely observed in nonoxide materials.  相似文献   
178.
Overall water splitting using GaN:ZnO solid solution photocatalyst modified with Rh(2-y)Cr(y)O(3) nanoparticles as H(2) evolution cocatalysts under visible light (400 < λ < 500 nm) was examined with respect to long-term durability and regeneration of photocatalytic activity. The rate of visible light water splitting remained unchanged for 3 months (2160 h), producing H(2) and O(2) continuously at a stoichiometric amount. After 6 months of operation, a 50% loss of the initial activity occurred. Regeneration treatment of deactivated catalysts was attempted by reloading the Rh(2-y)Cr(y)O(3) cocatalyst. The degree of activity regeneration depended on the reloading amount. Up to 80% of the initial activity for H(2) evolution could be recovered under optimal treatment conditions. It was also found that deactivation of GaN:ZnO was suppressed to some extent by prior coloading of an O(2) evolution cocatalyst, which helped to suppress oxidative decomposition of GaN:ZnO by valence band holes, thereby improving the durability.  相似文献   
179.
Single-crystal Ca(10)(Pt(4)As(8))(Fe(1.8)Pt(0.2)As(2))(5) superconducting (SC) nanowhiskers with widths down to hundreds of nanometers were successfully grown in a Ta capsule in an evacuated quartz tube by a flux method. Magnetic and electrical properties measurements demonstrate that the whiskers have excellent crystallinity with critical temperature of up to 33 K, upper critical field of 52.8 T, and critical current density of J(c) of 6.0 × 10(5) A/cm(2) (at 26 K). Since cuprate high-T(c) SC whiskers are fragile ceramics, the present intermetallic SC whiskers with high T(c) have better opportunities for device applications. Moreover, although the growth mechanism is not understood well, the technique can be potentially useful for growth of other whiskers containing toxic elements.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号