首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   40篇
  国内免费   1篇
化学   382篇
力学   3篇
数学   6篇
物理学   65篇
  2023年   5篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   19篇
  2015年   15篇
  2014年   11篇
  2013年   21篇
  2012年   29篇
  2011年   35篇
  2010年   16篇
  2009年   10篇
  2008年   27篇
  2007年   23篇
  2006年   26篇
  2005年   33篇
  2004年   29篇
  2003年   17篇
  2002年   21篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1975年   4篇
  1974年   1篇
  1973年   4篇
排序方式: 共有456条查询结果,搜索用时 78 毫秒
131.
The synthesis, characterization and proposed growth process of a new kind of comet-like Au-ZnO superstructures are described here. This Au-ZnO superstructure was directly created by a simple and mild solvothermal reaction, dissolving the reactants of zinc acetate dihydrate and hydrogen tetrachloroaurate tetrahydrate (HAuCl4·4H2O) in ethylenediamine and taking advantage of the lattice matching growth between definitized ZnO plane and Au plane and the natural growth habit of the ZnO rods along [001] direction in solutions. For a typical comet-like Au-ZnO superstructure, its comet head consists of one hemispherical end of a central thick ZnO rod and an outer Au-ZnO thin layer, and its comet tail consists of radially standing ZnO submicron rod arrays growing on the Au-ZnO thin layer. These ZnO rods have diameters in range of 0.2-0.5 μm, an average aspect ratio of about 10, and lengths of up to about 4 μm. The morphology, size and structure of the ZnO superstructures are dependent on the concentration of reactants and the reaction time. The HAuCl4·4H2O plays a key role for the solvothermal growth of the comet-like superstructure, and only are ZnO fibers obtained in absence of the HAuCl4·4H2O. The UV-vis absorption spectrum shows two absorptions at 365-390 nm and 480-600 nm, respectively attributing to the characteristic of the ZnO wide-band semiconductor material and the surface plasmon resonance of the Au particles.  相似文献   
132.
Mechanistic and energetic aspects for the conversion of camphor to 5-exo-hydroxycamphor by the compound I iron-oxo species of cytochrome P450 are discussed from B3LYP DFT calculations. This reaction occurs in a two-step manner along the lines that the oxygen rebound mechanism suggests. The activation energy for the first transition state of the H atom abstraction at the C5 atom of camphor is computed to be more than 20 kcal/mol. This H atom abstraction is the rate-determining step in this hydroxylation reaction, leading to a reaction intermediate that involves a carbon radical species and the iron-hydroxo species. The second transition state of the rebound step that connects the reaction intermediate and the product alcohol complex lies a few kcal/mol below that for the H atom abstraction on the doublet and quartet potential energy surfaces. This energetic feature allows the virtually barrierless recombination in both spin states, being consistent with experimentally observed high stereoselectivity and brief lifetimes of the reaction intermediate. The overall energetic profile of the catalytic mechanism of camphor hydroxylation particularly with respect to why the high activation energy for the H atom abstraction is accessible under physiological conditions is also considered and calculated. According to a proton source model involving Thr252, Asp251, and two solvent water molecules (Biochemistry 1998, 37, 9211), the energetics for the conversion of the iron-peroxo species to compound I is studied. A significant energy over 50 kcal/mol is released in the course of this dioxygen activation process. The energy released in this chemical process is an important driving force in alkane hydroxylation by cytochrome P450. This energy is used for the access to the high activation energy for the H atom abstraction.  相似文献   
133.
We have presented the explicit formulas for first and second derivatives of A and B matrices, appearing in the random phase approximation (RPA), with the aid of Lagrangian technique. Owing to the 2n + 1 rule, the Lagrangian approach is more efficient than the conventional approach to evaluate the higher‐order matrix elements. We have confirmed the validity of our formulation by demonstrating the geometry optimization of the first‐excited singlet states of formaldehyde, ethylene, and 1‐amino‐3‐propenal molecules. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
134.
Adsorption of linear olefins (C2?C4) on a deuterated H-ZSM-5 (D-ZSM-5) was studied by infrared (IR) spectroscopy. The initial interaction of the olefins with Brønsted acidic OD groups was hydrogen-bonding to form π-complexes at low temperatures. The adsorbed ethene and propene desorbed by heating under evacuation, while various reactions took place for adsorbed 1-butene; double bond migration (DBM) to 2-butene below 230 K followed by dimerization at room temperature. An unusual reaction path was deduced for DBM of 1-butene, where proton transfer from Brønsted acid sites (BAS) to the adsorbed 1-butene was not essential.  相似文献   
135.
The reaction dynamics of trans-2-butene adsorbed to acidic hydroxyl groups on the surface of ferrierite zeolite is examined by time-resolved spectroscopy using a tunable infrared picosecond pulse laser system. The transient absorption spectra measured by a two-color pump-probe technique at 188-243 K reveal bleaching and hot bands of the OD stretching mode 2 ps after excitation. This vibrationally excited state relaxes within 20 ps at 188 K, while the bleaching band includes a long-lifetime component that lasts for more than 100 ps at 243 K. Thus, the OD (isotope-exchanged hydroxy groups) stretching band does not entirely recover in this period and is mirrored by an analogous weakening of the CH bending band of the adsorbed trans-2-butene. Simultaneously, three new bands in CH stretching region were observed at 3045, 3095, and 3130 cm(-1). This result suggests the presence of a short-lived intermediate formed by reaction between the acidic hydroxyl groups and adsorbed trans-2-butene.  相似文献   
136.
To understand the influences of the ribonucleotide on a duplex conformation and its stability, we systematically studied the CD spectra and the thermodynamics of nucleic acid duplexes formed by the chimeric RNA-DNA strand in which ribonucleotides and deoxyribonucleotides were covalently attached. It was found that the duplex stability was context-dependent and independent of the number of ribonucleotides in the chimeric strand, whereas the CD spectra showed less overall structural perturbation by the chimeric junctions. Combining the results of the CD and the thermodynamic data revealed a stability-structure relationship for the duplexes. Importantly, DeltaG(o)37 values estimated for the chimeric junction formation in the RNA-DNA/DNA and the RNA-DNA/RNA duplexes were close to those of RNA/DNA and RNA/RNA interactions, respectively. Furthermore, DeltaG(o)37s of the DNA-RNA/DNA and DNA-RNA/DNA-RNA junctions were similar to those of the DNA duplex, and the values of DNA-RNA/RNA-DNA were similar to those of the DNA/RNA. The thermodynamic analyses suggest that the 5'-nucleotide may be the crucial factor that determines the stability at the chimeric junction. Our results not only suggest influences of the ribonucleotide on a duplex conformation and its stability but also are useful for the design of RNA-DNA chimeric strands applicable to biotechnology.  相似文献   
137.
We have studied the interaction between metal ions and the metal ion-binding motif in hammerhead ribozymes, as well as the functions of the metal ion at the motif, with heteronuclear NMR spectroscopy. In this study, we employed model RNA systems which mimic the metal ion-binding motif and the altered motif. In Co(NH3)6(III) titrations, we observed large 1H and 31P chemical shift perturbations for the motif and found that outer-sphere complexation of Co(NH3)6(III) is possible for this motif. From the reinvestigation of our previous 15N chemical shift data for Cd(II) binding, in comparison with those of organometallic compounds, we conclude that Cd(II) can form an inner-sphere complex with the nucleobase in the motif. Therefore, the A9/G10.1 site was found to accept both inner-sphere and outer-sphere complexations. The Mg(II) titration for a slightly different motif from the A9/G10.1 site (G10.1-C11.1 to A10.1-U11.1) revealed that its affinity to Mg(II) was drastically reduced, although the ribozyme with this altered motif is known to retain enzymatic activities. This observation suggests that the metal ion at these motifs is not a catalytic center of hammerhead ribozymes.  相似文献   
138.
The enzymatic cleavage of RNA takes place via a cyclic pentacoordinate oxyphosphorane intermediate/transition state. We carried out ab initio investigations on the neutral cyclic oxyphosphorane, which exists as a stable intermediate. As a consequence of the conformational preferences of the pentacoordinate trigonal bipyramidal intermediates, the rotation of the P-OH bonds is strongly coupled with the reaction coordinate for the pseudorotation process. In addition, the neutral PF(4)OH species has a higher barrier to pseudorotation than the corresponding anionic species PF(4)O(-). These findings are related to the positive charge of the hydrogen atoms on the equatorial oxygens in the trigonal bipyramidal structures: the hydrogen atoms preferably adopt eclipsed positions relative to the axial ligands. Fixing the cationic species in these regions causes an increase in the barrier heights for pseudorotation processes and, thus, prevents isomerization by pseudorotation. Consequently, metal coordination in the double-metal ion mechanism for enzymatic cleavage of RNA should serve to exclusively stabilize the trigonal bipyramidal intermediate/transition state for the in-line attack and departure process.  相似文献   
139.
We propose a non‐radical mechanism for the conversion of methane into methanol by soluble methane monooxygenase (sMMO), the active site of which involves a diiron active center. We assume the active site of the MMOHQ intermediate, exhibiting direct reactivity with the methane substrate, to be a bis(μ‐oxo)diiron(IV ) complex in which one of the iron atoms is coordinatively unsaturated (five‐coordinate). Is it reasonable for such a diiron complex to be formed in the catalytic reaction of sMMO? The answer to this important question is positive from the viewpoint of energetics in density functional theory (DFT) calculations. Our model thus has a vacant coordination site for substrate methane. If MMOHQ involves a coordinatively unsaturated iron atom at the active center, methane is effectively converted into methanol in the broken‐symmetry singlet state by a non‐radical mechanism; in the first step a methane C? H bond is dissociated via a four‐centered transition state (TS1) resulting in an important intermediate involving a hydroxo ligand and a methyl ligand, and in the second step the binding of the methyl ligand and the hydroxo ligand through a three‐centered transition state (TS2) results in the formation of a methanol complex. This mechanism is essentially identical to that of the methane–methanol conversion by the bare FeO+ complex and relevant transition metal–oxo complexes in the gas phase. Neither radical species nor ionic species are involved in this mechanism. We look in detail at kinetic isotope effects (KIEs) for H atom abstraction from methane on the basis of transition state theory with Wigner tunneling corrections.  相似文献   
140.
Germanium nitride beta-Ge3N4 dispersed with RuO2 nanoparticles is presented as the first example of a non-oxide photocatalyst for the stoichiometric decomposition of H2O into H2 and O2. All of the successful photocatalysts developed for overall water splitting over the past 30 years have been based on oxides of metals. The discovery of a non-oxide photocatalyst, such as nitrides and oxynitrides, achieving the same function is therefore expected to stimulate research on non-oxide photocatalysts. New opportunities for progress in the development of visible light-driven photocatalysis can thus be expected, as the higher valence band positions of metal nitrides compared to the corresponding metal oxides provide narrower band gaps, which are suitable for visible light activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号