首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   33篇
  国内免费   3篇
化学   635篇
晶体学   9篇
力学   4篇
数学   33篇
物理学   228篇
  2023年   9篇
  2022年   16篇
  2021年   24篇
  2020年   24篇
  2019年   23篇
  2018年   28篇
  2017年   11篇
  2016年   35篇
  2015年   24篇
  2014年   22篇
  2013年   52篇
  2012年   50篇
  2011年   73篇
  2010年   31篇
  2009年   41篇
  2008年   45篇
  2007年   40篇
  2006年   49篇
  2005年   41篇
  2004年   30篇
  2003年   39篇
  2002年   31篇
  2001年   12篇
  2000年   26篇
  1999年   9篇
  1998年   4篇
  1997年   10篇
  1996年   5篇
  1995年   2篇
  1994年   13篇
  1993年   3篇
  1992年   15篇
  1991年   9篇
  1990年   2篇
  1989年   6篇
  1988年   7篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1937年   1篇
  1936年   1篇
排序方式: 共有909条查询结果,搜索用时 46 毫秒
291.
The first one-pot tandem Michael addition/enantioselective Conia-ene cyclization of N-protected prop-2-yn-1-amines with 2-methylene-3-oxoalkanoates promoted by chiral iron(III)/silver(I) cooperative catalysts has been developed. Alkyl 4-methylenepyrrolidine-3-acyl-3-carboxylates, which can be transformed into β-proline derivatives, are obtained in high yield with high enantioselectivity.  相似文献   
292.
Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/HxMoO3−y) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat−1 h−1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable HxMoO3−y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated “reverse Mars–van Krevelen (M–vK)” mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion.

Oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles affords high methanol yield in liquid-phase CO2 hydrogenation via reverse Mars–van Krevelen mechanism.  相似文献   
293.
Separation media based on hierarchically porous titania (TiO2) monoliths for high‐performance liquid chromatography (HPLC) have been successfully fabricated by the sol–gel process of titanium alkoxide in a mild condition utilizing a chelating agent and mineral salt. The as‐gelled TiO2 monoliths were subjected to a simple solvent exchange process from ethanol (EtOH) to H2O followed by drying and calcination. The resultant monolithic TiO2 columns consist of anatase crystallites with the typical specific surface area of more than 200 m2/g. The resultant monolithic TiO2 column calcined at 200 and 400°C exhibited a good separation performance for organophosphates as well as for polar benzene derivatives in the normal‐phase mode.  相似文献   
294.
A transition from hierarchical pore structures (macro- and meso-pores) to uniform mesopores in monolithic polymethylsilsesquioxane (PMSQ, CH(3)SiO(1.5)) gels has been investigated using a sol-gel system containing surfactant Pluronic F127. The precursor methyltrimethoxysilane (MTMS) undergoes an acid/base two-step reaction, in which hydrolysis and polycondensation proceed in acidic and basic aqueous media, respectively, as a one-pot reaction. Porous morphology is controlled by changing the concentration of F127. Sufficient concentrations of F127 inhibit the occurrence of micrometer-scale phase separation (spinodal decomposition) of hydrophobic PMSQ condensates and lead to well-defined mesoporous transparent aerogels with high specific pore volume as a result of the colloidal network formation in a large amount of solvent. Phase separation regulates well-defined macropores in the micrometer range on decreasing concentrations of F127. In the PMSQ-rich gelling domain formed by phase separation, the PMSQ colloidal network formation forms mesopores, leading to monolithic PMSQ gels with hierarchical macro- and meso-pore structures. Mesopores in these gels do not collapse on evaporative drying owing to the flexible networks and repulsive interactions of methyl groups in PMSQ.  相似文献   
295.
Fresh or hydrolyzed sodium alginate was used as a material for preparing calcium alginate microspheres, and a drastic difference in porous structure was observed between them, even though the other materials and the preparation method except for the sodium alginate were exactly the same. When fresh sodium alginate was used, nonporous microspheres were obtained. In contrast, when 82-day-hydrolyzed sodium alginate, whose molecular weight became 7% of the molecular weight of the fresh sodium alginate, was used, porous microspheres with 6.5 times larger BET surface area were obtained. XPS studies indicated that the atomic ratio of Ca, the crosslinker of the alginic acid polymer, was almost the same in both cases. Therefore, the difference in porous structure was not attributed to the amount of crosslinking points, but to the low-molecular-weight compounds formed by hydrolysis, and they would work as pore-generating agents.  相似文献   
296.
Phospholipase D (PLD) catalyzes transphosphatidylation, causing inter-conversion of the polar head group of phospholipids and phospholipid hydrolysis. Previously, we cloned PLD103, a PLD with high transphosphatidylation activity, from Streptomyces racemochromogenes strain 10-3. Here, we report the construction of an expression system for the PLD103 gene using Streptomyces lividans as the host bacterium to achieve large-scale production. The phosphatidylcholine (PC) hydrolysis activity of S. lividans transformed with the expression plasmid containing the PLD103 gene was approximately 90-fold higher than that of the original strain. The recombinant PLD103 (rPLD103) found in the supernatant of the transformant culture medium was close to homogeneous. The rPLD103 was indistinguishable from the native enzyme in molecular mass and enzymatic properties. Additionally, rPLD103 had high transphosphatidylation activity on PC as a substrate in a simple aqueous one-phase reaction system and was able to modify the phospholipid content of soybean lecithin. Consequently, the expression system produces a stable supply of PLD, which can then be used in the production of phosphatidyl derivatives from lecithin.  相似文献   
297.
This paper describes the details of our synthetic studies on the marine steroidal alkaloids cortistatins A and J. The key features of our strategy include (i) an efficient Knoevenagel/electrocyclic strategy to couple the diketone and the CD-ring fragment, (ii) a chemoselective radical cyclization to construct the oxabicyclo[3.2.1]octene B-ring system, (iii) a highly stereocontrolled installation of the isoquinoline unit, and (iv) a late-stage functionalization of the A-ring.  相似文献   
298.
A new three-dimensional diamagnetic metal nitronyl nitroxide radical coordination polymer with an aqua cadmium cyanide framework Cd(NIT4py)(H2O)Cd(CN)4·H2O 1, was synthesized. X-ray crystallography reveals that the structure consists of 3D aqua cadmium cyanide built up by octahedral CdII coordinating to NIT4py and tetrahedral CdII (CN)4 units. Magnetic measurements show that the χmT values are nearly constant at higher temperature. The lower χmT values at lower temperature are related to intermolecular antiferromagnetic interactions of the radicals, which arise due to the hydrogen bonded network (TN = 21 K).  相似文献   
299.
A novel two-dimensional network bimetallic Fe Au spin crossover coordination polymer based on 3-phenylpyridine-coordinated iron centers and linear gold cyanide bridges {Fe(3-phenylpyridine)2[Au(CN)2]2}n (1), has been synthesized. The compound is characterized by elemental analysis, IR, single-crystal X-ray analysis at 300 and 90 K and magnetic measurements. The FeII ions in 1 have octahedral FeIIN6 coordination geometries, which are linked by [Au(CN)2] units at the equatorial plane to form a polymeric 2D sheet architecture. The two pyridine rings coordinate in axial position. Variable-temperature (2-300 K) magnetic susceptibility measurements of 1 were performed to determine the spin transition behavior. SQUID data show that high and low spin states exist in a 1:1 ratio at 90 K. However, only one kind of FeII atom is apparent crystallographically at 90 K, indicating that the high and low spin sites are disordered in the polymeric 2D framework.  相似文献   
300.
We studied the electrochromic (EC) and electrochemiluminescent (ECL) properties of a novel dual-mode display (DMD) cell that was enabled for reflective and emissive modes of representation by introducing both EC and ECL materials into an electrochemical cell. We fabricated EC, ECL, and DMD cells based on a simple-mixture solution or modified electrodes and compared their properties to clarify the advantage of a DMD system based on modified electrodes. Both the solution- and modified electrode-based DMDs showed EC properties in the reflective mode under dc bias application and ECL properties in the emissive mode under ac bias application. Although the solution-based DMD cell featured a very simple structure, some improvements related to side reaction and quenching reaction were required. The modified electrode-based DMD cell was fabricated to improve these aspects. The advantage of the DMD model based on the modified electrodes was certainly suggested by comparisons of the results with those of EC, ECL, and DMD cells based on a simple-mixture solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号