首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   36篇
  国内免费   4篇
化学   1118篇
晶体学   12篇
力学   12篇
数学   26篇
物理学   261篇
  2022年   7篇
  2021年   15篇
  2020年   16篇
  2019年   16篇
  2018年   13篇
  2017年   7篇
  2016年   20篇
  2015年   29篇
  2014年   32篇
  2013年   78篇
  2012年   66篇
  2011年   66篇
  2010年   44篇
  2009年   38篇
  2008年   70篇
  2007年   97篇
  2006年   93篇
  2005年   64篇
  2004年   83篇
  2003年   56篇
  2002年   67篇
  2001年   38篇
  2000年   23篇
  1999年   27篇
  1998年   17篇
  1997年   19篇
  1996年   15篇
  1995年   14篇
  1994年   18篇
  1993年   19篇
  1992年   19篇
  1991年   15篇
  1990年   15篇
  1989年   9篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   26篇
  1984年   18篇
  1983年   12篇
  1982年   14篇
  1981年   25篇
  1980年   15篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   5篇
  1975年   12篇
  1974年   5篇
  1973年   7篇
排序方式: 共有1429条查询结果,搜索用时 0 毫秒
61.
62.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
63.
There is growing awareness that circadian clocks are closely related to the intracellular redox state across a range of species. As the redox state is determined by the exchange of the redox species, electrochemically controlled extracellular electron transfer (EC‐EET), a process in which intracellular electrons are exchanged with extracellular electrodes, is a promising approach for the external regulation of circadian clocks. Herein, we discuss whether the circadian clock can be regulated by EC‐EET using the cyanobacterium Synechococcus elongatus PCC7942 as a model system. In vivo monitoring of chlorophyll fluorescence revealed that the redox state of the plastoquionone pool could be controlled with EC‐EET by simply changing the electrode potential. As a result, the endogenous circadian clock of S. elongatus cells was successfully entrained through periodically modulated EC‐EET by emulating the natural light/dark cycle, even under constant illumination conditions. This is the first example of regulating the biological clock by electrochemistry.  相似文献   
64.
Selective oxidation of sulfides to sulfoxides and sulfones with hydrogen peroxide under organic solvent-free conditions was demonstrated by the MWW-type titanosilicate zeolite catalyst. Sulfides were oxidized smoothly to give sulfoxides with good selectivities at ambient temperature using 1.0–1.2 equiv of hydrogen peroxide with the MWW-type titanosilicate zeolite catalyst. Especially, the Ti-MWW with an interlayer-expanded structure (Ti-IEZ-MWW) catalyst showed high activity with good chemoselectivity for the oxidation of various sulfides. The catalyst is recyclable for at least five cycles, and the only byproduct is water. Sulfides were directly oxidized to give sulfones in high yields by 2.5 equiv of hydrogen peroxide with the MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions.  相似文献   
65.
A relationship between local structure, thermal stability and electrical conductivity (σ) of xR2O·10Fe2O3·(90 ? x)V2O5 glasses (abbreviated as xRFV glasses, where R = Li, Na, K; x = 20 and 40 in mol %) was investigated by 57Fe-Mössbauer spectroscopy, X-ray diffractometry, differential thermal analysis (DTA) and DC two- and four-probe method. From DTA study, thermal stability of 20RFV glasses is lower than that of 40RFV glasses by evaluating Hruby parameter (K gl). Constant activation energy for crystallization (E a) of 2.5 eV obtained from both 20RFV and 40RFV glasses indicate that the crystallization proceeds with the cleavage of Fe–O bond having the energy of 2.6 eV. Isochronally annealed 20RFV glass at 400–450 °C resulted in the increase in electrical conductivity (σ) from the order of 10?3 to 10?1 S cm?1, whereas slight decrease in σ was observed for 20RFV glass annealed above 460 °C. A paramagnetic doublet with an identical isomer shift (δ) of 0.39 mm s?1 was observed in the 57Fe-Mössbauer spectra of 20RFV glass after isothermal annealing conducted at 400–450 °C for 100 min, which caused a decrease of quadruple splitting (Δ) from 0.67 to 0.52 mm s?1 for 20LiFV glass and from 0.66 to 0.53 mm s?1 for 20NaFV glass. On the other hand, three paramagnetic doublets with δ and Δ of 0.40 and 0.25, 0.38 and 0.60, and 0.31 and 1.11 mm s?1 respectively were observed for 20RFV glass annealed at 460–550 °C, reflecting precipitation of semiconducting FeVO4 phase having σ of 6.0 × 10?7 S cm?1. It can be concluded that isochronal annealing of 20RFV glass below 450 °C resulted in increase in σ due to the structural relaxation, while annealing above 500 °C resulted in the decrease of σ due to the precipitation of FeVO4 phase.  相似文献   
66.
Hagen N  Oka K  Dereniak EL 《Optics letters》2007,32(15):2100-2102
We present a new snapshot technique for performing spectrally resolved Mueller matrix polarimetry. The basic approach is an extension of the channeled spectropolarimetry technique, employing frequency-domain interferometry to encode polarization information into modulation of the spectrum.  相似文献   
67.
Fiber-shaped cupric oxide (CuO) nanoparticles and flower-shaped ZnO nanoparticles were facilely synthesized by plasma-induced technique directly from copper and zinc electrode pair in water, respectively. The phase composition, morphologies and optical property of nanoparticles have been investigated by energy dispersive X-ray analysis, X-ray powder diffraction, transmission electron microscopy and UV–vis. The in situ analysis by an optical emission spectroscopy clarified the formation mechanism. Plasma was generated from the discharge between a metal electrode pair in water by a pulse direct current power. CuO and ZnO nanoparticles were synthesized via almost the same formation mechanism, which were prepared via the rapid energetic radicals’ bombardment to electrodes’ surface, atom vapour diffusion, plasma expansion, solution medium condensation, and in situ oxygen reaction and further growth. This novel plasma-induced technique will become a potential application in nanomaterials synthesis.  相似文献   
68.
The decomposition of protein molecules from a mixed-protein solution on the surface of calcium hydroxyapatite (CaHap) and Ti(IV)-doped CaHap (TiHap) particles with a Ti/(Ca + Ti) atomic ratio (X Ti) of 0.10 and 0.20 under UV irradiation of 365 nm in wavelength was investigated. Acidic bovine serum albumin (BSA) and basic lysozyme (LSZ) were employed as a model of pathogenic proteins. The photocatalytic activities of TiHap particles were estimated from the decomposition of BSA and LSZ from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture under 1 mW/cm2 UV irradiation dispersed in a 10-mL quartz tube. No change in BSA concentration by UV irradiation was observed for all the unheated original CaHap and TiHap particles without and with low photocatalytic activities, respectively. Similar results were observed for the systems that employed heat-treated particles endowed a high photocatalytic activity by heat treatment at 650 °C for 1 h. On the other hand, a selective photocatalytic decomposition was observed for the LSZ, i.e., only LSZ molecules were decomposed completely from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture by using heat-treated TiHap particles with X Ti?=?0.10 and 0.20. This selective decomposition by TiHap particles was interpreted by higher adsorption affinity of positively charged LSZ to highly negatively charged TiHap together with low molecular weight and rigid structure of LSZ molecules.  相似文献   
69.
70.
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal‐free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water‐soluble polymers, 2‐methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine‐immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue‐mimicking ECM hybrid hydrogels are fabricated successfully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号