首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   5篇
化学   753篇
晶体学   12篇
力学   14篇
数学   54篇
物理学   117篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   9篇
  2016年   30篇
  2015年   28篇
  2014年   52篇
  2013年   67篇
  2012年   37篇
  2011年   143篇
  2010年   66篇
  2009年   62篇
  2008年   63篇
  2007年   60篇
  2006年   52篇
  2005年   57篇
  2004年   56篇
  2003年   44篇
  2002年   8篇
  2001年   18篇
  2000年   3篇
  1999年   23篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有950条查询结果,搜索用时 904 毫秒
131.
Adhikari BB  Gurung M  Kawakita H  Ohto K 《The Analyst》2011,136(21):4570-4579
The solvent extraction behavior of multiple proton ionizable p-tert-butylcalix[4]arene and [6]arene carboxylic acid derivatives towards indium has been investigated along with an acyclic monomeric analogue from weakly acidic media into chloroform. The extraction mechanism is ion exchange and carboxylic acid groups are adequate ligating sites for extraction. The cyclic structure of calixarene ligands to accommodate the potential guest species and the cooperativity effect of multifunctional groups significantly affect the complexation behavior and calixarene derivatives are found to be excellent extractants over the monomeric analogue. The composition of the extracted complex depends on the solution pH and attempts to determine the composition of the extracted complex for the extraction of indium have been stymied by complications arising from the formation of polynuclear species of indium and bridged polymeric species of calixarene carboxylic acid derivatives. One mole of calix[4]arene derivative extracts 2.5 moles of indium whereas the calix[6]arene derivative tends to extract 4.0 moles of indium. The loaded indium is back extracted with 1 mol dm(-3) hydrochloric acid solution. Though quantitative back extraction of indium was achieved from the fully loaded calix[6]arene derivative, it was only achieved up to 85% in the case of the calix[4]arene derivative.  相似文献   
132.
Since its introduction, click chemistry has received a considerable amount of interest. In this contribution, the term click chemistry and the reactions that fall under this term are briefly explained. The main focus of this review is on the application of click chemistry in conjunction with living radical polymerization for the synthesis of advanced macromolecular architectures. Therefore the most powerful living radical polymerization (LRP) techniques are discussed and an overview of click chemistry in the different synthetic schemes is given. A large number of examples are shown that include the synthesis of block copolymers, star-shaped polymers, surface modified particles, and polymer-protein conjugates. The enormous potential of LRP/click chemistry is probably best exemplified by the synthesis of different miktoarm star copolymers, to which a separate section is dedicated.  相似文献   
133.
In this paper we reexamine recent results obtained by our group on the crystallization of nanocomposites and linear and miktoarm star copolymers in order to obtain some general features of their crystallization properties. Different nanocomposites have been prepared where a close interaction between the polymer matrix and the nano-filler has been achieved: in situ polymerized high density polyethylene (HDPE) on carbon nanotubes (CNT); and polycaprolactone (PCL) and poly(ethylene oxide) (PEO) covalently bonded to carbon nanotubes. In all these nanocomposites a “super-nucleation” effect was detected where the CNTs perform a more efficient nucleating action than the self-nuclei of the polymer matrix. It is believed that such a super-nucleation effect stems from the fact that the polymer chains are tethered to the surface of the CNT and can easily form nuclei. For polystyrene (PS) and PCL block copolymers, miktoarm star copolymers (with two arms of PS and two arms of PCL) were found to display more compact morphologies for equivalent compositions than linear PS-b-PCL diblock copolymers. As a consequence, the crystallization of the PCL component always experienced much higher confinement in the miktoarm stars case than in the linear diblock copolymer case. The consequences of the topological confinement of the chains in block copolymers and nanocomposites on the crystallization were the same even though the origin of the effect is different in each case. For nanocomposites a competition between super-nucleation and confinement was detected and the behavior was dominated by one or the other depending on the nano-filler content. At low contents the super-nucleation effect dominates. In both cases, the confinement increases as the nano-filler content increases or the second block content increases (in this case a non-crystallizable block such as PS). The consequences of confinement are: a reduction of both crystallization and melting temperatures, a strong reduction of the crystallinity degree, an increase in the supercooling needed for isothermal crystallization, a depression of the overall crystallization rate and a decrease in the Avrami index until values of one or lower are achieved indicating a nucleation control on the overall crystallization kinetics.  相似文献   
134.
Anionic polymerization is the oldest known living/controlled polymerization methodology that leads to well defined macromolecules. It has been also used, with considerable success, for the synthesis of amphiphilic block copolymers (AmBC), a class of functional copolymers having interesting self-assembling properties and high potential for applications in various technological fields. The use of mild and effective post-polymerization functionalization/chemical modification reactions on block copolymers has substantially increased the synthetic capabilities of anionic polymerization methodologies, toward the creation of a variety of AmBC. In this feature article we review work done on these directions in the last ten years. Some perspectives and future work on this particular field of polymer science are also discussed.  相似文献   
135.
This mini-review describes recent work in the field of glycopolymer synthesis, with a focus on methods that have employed “click chemistry” and controlled polymerization methodology. A variety of carbohydrates with clickable groups such as azide, alkyne, and thiol moieties provide new routes to glycopolymers. Several studies use copper catalyzed azide-alkyne cycloaddition (CuAAC) reactions to synthesize glycomonomers or to incorporate carbohydrates into a clickable polymeric backbone. Alternatively, there are many thiol based click reactions which provide metal-free synthesis, which are discussed in details.  相似文献   
136.
The electro-responsive transdermal drug delivery system was prepared by electrospinning of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. The surface modification of MWCNTs was carried out by oxyfluorination to introduce the functional groups on the hydrophobic MWCNTs. The dispersion of MWCNTs and the compatibility with polymer matrices were improved by oxyfluorination. The MWCNT content and oxyfluorination condition played important roles in the swelling and drug release characteristics of nanofibers. The conductivity of nanofibers increased by increasing the content of MWCNTs and performing oxyfluorination with higher oxygen content. Uniform distribution of the oxyfluorinated MWCNTs in the nanofibers was crucial to the electro-responsive swelling and drug releasing behaviors of nanofibers.  相似文献   
137.
The mass transfer kinetics of alanyl-alanine enantiomers in a column packed with a chiral stationary phase (CSP) ChiroSil RCA(+) was studied by means of the moment method. Methanol-water solutions acidified with sulphuric acid were used as the mobile phase. It was shown that the spreading of peaks in the column was strongly affected by abnormal eddy diffusion. This effect was well described within the framework of the Giddings coupling theory. The comprehensive four-term Giddings equation for eddy diffusion was applied, considering simultaneous contribution of the trans-column, trans-channel, short-range inter-channel, and long-range inter-channel dispersion factors. Through these calculations, a predominant importance of the trans-column flow velocity bias was revealed. Besides eddy diffusion, the adsorption kinetic resistance to mass transfer plays a noticeable role in band broadening, all the other contributions (from longitudinal molecular diffusion, external and intraparticle mass transfer) being of minor significance. A relative importance of the mass transfer kinetics increases correlatively with a growth of the retention factor. Both the retention and kinetics of the adsorption of alanyl-alanine on the CSP in study are enantioselective. The influence of the column pressure on retention as well as corrections required because of this influence are also discussed.  相似文献   
138.
The structural characterization of different kinds of zigzag and chiral single-walled carbon nanotubes (SWNTs) has been investigated theoretically using (19)F NMR spectroscopy. The chemical shift anisotropy (CSA) tensor is computed at different levels of theory for the (19)F nuclei in different forms of functionalized fluorinated carbon nanotubes (CNT). A set of fluorine CSA parameters comprising the span, skew, and isotropic chemical shift is computed for each form of the fluoronanotubes and multidimensional CSA parameter correlation maps are constructed. We show that these correlations are able to clearly distinguish between the chiral and zigzag forms of fluorinated carbon nanotubes (F-SWNTs). Implications for solid-state and liquid-state NMR experiments are discussed.  相似文献   
139.
The good understanding of a photochromic reaction mechanism requires the establishment of the list of all the transient species and the definition of their connecting processes. The purpose of kinetic studies is the determination of the main photochromic parameters, such as the quantum yields of photoisomerization, rate constants of thermal relaxation and spectra of transient species. These data allow the establishment of structure properties relationships in order to select the best substituents to improve photochromic performances within a given series. In this review, we describe the dynamic behaviour of various photochromic systems during thermal relaxation after irradiation, from the simplest mono-exponential decay to the more complicated multi-exponential dynamics. Then, we analyse the evolution of the long-lived isomers under continuous irradiation. Several pedagogical examples and tricks to perform easy kinetic analysis are given in the appendices.  相似文献   
140.
The consumption of titanium dioxide in today's world is on the increase. As the most popular nano substance, TiO2 is used in various industries notably in the textile industry. More and more recently, through a synergistic combination of photocatalytic features of nanoparticles, fabrics with novel properties are produced. Self-cleaning and stability against UV rays as well as chemical media, to name but a few, are among new prominent properties, obtained on textiles. A common subject reported in most studies has been the diverse approaches to immobilize the nanoparticles on the surface of fabrics. Wool is among common textile materials that have undergone numerous processes to be modified. This review intends to bring to light different aspects of application of nano titanium dioxide in the textile industry especially on wool, and also presents a concise overview on the rigorous pieces of research conducted in this realm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号